• Title/Summary/Keyword: Crown wall

Search Result 103, Processing Time 0.022 seconds

Stress Analysis of Posterior Porcelain-Fused-to-Metal Crown by Marginal Configurations (구치부(臼齒部) 도재전장주조관(陶在前裝鑄造冠) 변연형태(邊緣形態)에 따른 응력분석(應力分析))

  • Kim, Kwang-Seok;Song, Kwang-Yup;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.161-179
    • /
    • 1987
  • To study the mechanical behaviors of the margins of porcelain-fused-to-metal crown on the posterior teeth, 5 types of margins on the lower first molar were chosen, and then the finite element models were constructed. 50kg forces were applied to the porcelain on the axial wall supported by the metal vertically. The displacements and stresses of the porcelain-fused-to-metal crown were analyzed to investigate the influence of the type of margins. The results were as follows; 1. High tensile stresses were exhibited on the porcelain of the portion of the coronal line angle insufficient metallic support. 2. In case metal coping had a good supporting form to vertical force, uniform compressive stresses were exhibited on their supporting form. 3. Tensile stresses in the inframetallic margin on the series of the shoulder with a bevel margins were decreased in the bevel portion. 4. Principal stresses on the metal of the chamfer marginal portion were decreased comparing with the series of the shoulder margins. 5. The noticeable compressive stress gradients were exhibited between axial cement layer and metal on the series of the shoulder margins. 6. The principal stresses on the marginal cement layer were higher than that of the occlusal surface and axial wall.

  • PDF

Experimental Investigation of Wave Force on the Pavement behind Crown Wall of Rubble Mound Seawall (경사식 호안 상부구조물 배후 포장체에 작용하는 파력에 대한 실험적 연구)

  • Ko, Haeng Sik;Lee, Jooyeon;Jang, Se-Chul;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Physical experiments were conducted to establish an empirical formula that predicts the wave force on the upside of the pavement behind crown wall of rubble mound seawall due to wave overtopping as well as the uplift force on the downside of the pavement. The experiments were performed by different conditions of the parapet, water depth, relative freeboard, and thickness of the armour layer. Then, the wave force on the upside and downside of the pavement behind the crown wall was analyzed. The parameters that affect the wave overtopping force and the uplift force were identified and empirical formulae were suggested for evaluating the forces on the pavement.

A Case Study of Comparing Formulae for Estimating Horizontal Wave Force on Crown Wall of Sloping Breakwater (경사식 방파제 상부구조물 작용 수평파력 산정식 비교 사례 연구)

  • Oh, Sang-Ho;Oh, Young Min;Yeo, Bong-Gu;Han, Tae-Young
    • Journal of Coastal Disaster Prevention
    • /
    • v.1 no.1
    • /
    • pp.28-35
    • /
    • 2014
  • This study investigated the applicability of four empirical equations (Morihira et al., 1967; Goda, 2010; Jensen, 1984 and Bradbury et al., 1988; Pedersen, 1996) suggested for estimating the horizontal wave force on the crown wall of sloping breakwaters. For the two exemplary cross sections of the breakwaters whose geometry are apparently different each other, the estimates of horizontal wave force calculated by the four equations were compared. The values of estimated wave force showed considerable discrepancy among the equations for each of the two exemplary breakwater cross sections, respectively. In addition, the relative magnitude of the wave force was quite different according to the breakwater geometry as well as the design wave condition. In general, Morihira's or Goda's formulae produced larger estimates of the horizontal wave force than Jensen/Bradbury's or Pedersen's formulae if the wave period (or wavelength) is comparatively short. In contrast, exactly opposite result was obtained when the wave period or wavelength is comparatively long. Further detailed study based on physical experiments is required to examine the applicability of the four empirical equations considered in this study more thoroughly.

THE FILM THICKNESS AND RETENTION OF CAST CROWN USING ADHESIVE RESIN CEMENTS (접착성 레진 시멘트를 이용한 주조관의 피막후경과 유지력에 관한 연구)

  • Jung Young-Wan;Cho Hye-Won;Jin Tai-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.437-443
    • /
    • 1992
  • This study was performed to investigate the availability of adhesive resin cement for luting agent of cast crown. The resin cements used in this study were Panavia-Ex(Kuraray Co., Japan) and C & B-Metabond (Parkell Bio-Materials U.S.A.). Zinc phosphate cement was Flecks zinc cement(Mizzy Inc., U.S.A.) The film thickness of cast crown at gingival margin, lateral wall and occlusal surface was observed with measuring microscope(Modek MXT 70 Matsuzawa Seiki Co., Japan) and the retention of cast crown was measured with Instron Universal Test Machine (Instron Engineering Co., U.S.A.) The results were as follows : 1. The value of retention of cast crown was the highest in the use of Panavia-EX, followed by C & B-Metabond and 2inc phosphate cement, respectively. 2. There was no difference in film thickness among the three cements, but the film thickness in all cements was highest at occlusal surface.

  • PDF

A Study on Failure Mode of Pipe Elbows with Wall Thinning (두께 감소된 배관 엘보우의 파손 모드에 대한 연구)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Difference of failure modes was studied by finite element analysis for elbows with local wall thinning area particularly at inner surface of intrados of the elbow. Longitudinal wall thinning length, minimum thickness were kept constant but circumferential wall thinning width was varied to get $90^{\circ}$, $180^{\circ}$ and $360^{\circ}$ thinning width. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending moment closing the elbow. Von Mises stress were obtained from the outer surface central surface location in intrados, extrados and crown parts in elbow. The results showed that the plastic deformation and failure started from the crown location when the thinning width small ($90{\sim}180^{\circ}$). However, plastic collapse started from the intrados location when the thinning width is approaching $360^{\circ}C$. This should be reflected to assess structural integrity of elbows after wall thinning measurement is made.

  • PDF

A novel retentive type of dental implant prosthesis: marginal fitness of the cementless double crown type implant prosthesis evaluated by bacterial penetration and viability

  • Hong, Seoung-Jin;Kwon, Kung-Rock;Jang, Eun-Young;Moon, Ji-Hoi
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.233-238
    • /
    • 2020
  • PURPOSE. This study aims to compare the marginal fitness of two types of implant-supported fixed dental prosthesis, i.e., cementless fixation (CL.F) system and cement-retained type. MATERIALS AND METHODS. In each group, ten specimens were assessed. Each specimen comprised implant lab analog, titanium abutment fabricated with a 2-degree tapered axial wall, and zirconia crown. The crown of the CL.F system was retained by frictional force between abutment and relined composite resin. In the cement-retained type, zinc oxide eugenol cement was used to set crown and abutment. All specimens were sterilized with ethylene oxide, immersed in Prevotella intermedia culture in a 50 mL tube, and incubated with rotation. After 48 h, the specimens were washed thoroughly before separating the crown and abutment. The bacteria that penetrated into the crown-abutment interface were collected by washing with 500 µL of sterile saline. The bacterial cell number was quantified using the agar plate count technique. The BacTiter-Glo Microbial Cell Viability Assay Kit was used to measure bacterial adenosine triphosphate (ATP)-bioluminescence, which reflects the bacterial viability. The t-test was performed, and the significance level was set at 5%. RESULTS. The number of penetrating bacterial cells assessed by colony-forming units was approximately 33% lower in the CL.F system than in the cement-retained type (P<.05). ATP-bioluminescence was approximately 41% lower in the CL.F system than in the cement-retained type (P<.05). CONCLUSION. The CL.F system is more resistant to bacterial penetration into the abutment-crown interface than the cement-retained type, thereby indicating a precise marginal fit.

FUZZY SUPPORT VECTOR REGRESSION MODEL FOR THE CALCULATION OF THE COLLAPSE MOMENT FOR WALL-THINNED PIPES

  • Yang, Heon-Young;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.607-614
    • /
    • 2008
  • Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.

Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks

  • Yun, So Hun;Koo, Young Do;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2678-2685
    • /
    • 2020
  • The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.

Seismic responses of a metro tunnel in a ground fissure site

  • Liu, Nina;Huang, Qiang-Bing;Fan, Wen;Ma, Yu-Jie;Peng, Jian-Bing
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.775-781
    • /
    • 2018
  • Shake table tests were conducted on scaled tunnel model to investigate the mechanism and effect of seismic loadings on horseshoe scaled tunnel model in ground fissure site. Key technical details of the experimental test were set up, including similarity relations, boundary conditions, sensor layout, modelling methods were presented. Synthetic waves and El Centro waves were adopted as the input earthquake waves. Results measured from hanging wall and foot wall were compared and analyzed. It is found that the seismic loadings increased the subsidence of hanging wall and lead to the appearance and propagation of cracks. The values of acceleration, earth pressure and strain were greater in the hanging wall than those in the foot wall. The tunnel exhibited the greatest earth pressure on right and left arches, however, the earth pressure on the crown of arch is the second largest and the inverted arch has the least earth pressure in the same tunnel section. Therefore, the effect of the hanging wall on the seismic performance of metro tunnel in earth fissure ground should be considered in the seismic design.

Limit Load and Approximate J-Integral Estimates for Axial-Through Wall Cracked Pipe Bend (축방향 관통균열이 존재하는 곡관의 한계 하중 및 공학적 J-적분 예측)

  • Song, Tae-Kwang;Kim, Jong-Sung;Jin, Tae-Eun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.562-569
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J estimates for axial through-wall cracked pipe bends under internal pressure and in-plane bending. Geometric variables associated with a crack and pipe bend are systematically varied, and three possible crack locations (intrados, extrados and crown) in pipe bends are considered. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, effect of bend and crack geometries on plastic limit loads for axial through-wall cracked pipe bends under internal pressure and in-plane bending are quantified, and closed-form limit solutions are given. Based on proposed limit load solutions, a J estimation scheme for axial through-wall cracked pipe bends under internal pressure and in-plane bending is proposed based on reference stress approach.