• Title/Summary/Keyword: Crown fuel

Search Result 32, Processing Time 0.029 seconds

Crown Fuel Characteristics and Allometric Equations of Pinus densiflora Stands in Youngju Region (영주지역 소나무림의 수관연료특성 및 수관연료량 추정)

  • Kim, Sungyong;Lee, Byungdoo;Seo, Yeonok;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.266-272
    • /
    • 2011
  • This study was conducted to analyze the characteristics of crown fuel biomass and to develop allometric equations for the estimation of crown fuel biomass by subjectively categorized the crown component in Pinus densiflora stands. A total of ten representative trees were destructively sampled in Youngju region. Crown fuel were weighed separately for each fuel category by size class. The results of this study showed that foliar moisture content was 119% while the average crown moisture content was 105.3%. The crown fuel/total fuel loading ratio was 30%, needles and twigs with less than 1 cm diameter accounted 50.3% for its fuel/crown fuel loading ratio. Adjusted multiple coefficient of determination of suggested allometric equations ranged from 0.6846 to 0.9246 for crown fuel biomass, 0.8308 for crown volume.

Crown Fuel Characteristics of Japanese Red Pine (Pinus densiflora) in Mt. Palgong, Daegu (대구 팔공산 지역의 소나무 수관층 연료 특성)

  • Koo, Kyo-Sang;Lee, Byung-Doo;Won, Myoung-Soo;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.52-56
    • /
    • 2010
  • Crown fuel characteristics such as crown bulk density, crown base height, and fuel moisture content of Japanese red pine were analyzed. Ten trees in Mt. Palgong at Daegu, were destructively sampled and their crown fuels were weighed separately for each fuel category. Fuel content of live and dead crown component were 53%, and 15.3%, respectively. Foliar moisture content was 56%. Needles and twigs with diameter less than 1cm diameter accounted for 16.2%, 55% of total and crown fuel load. Average crown bulk density of Japanese red pine was 0.24 kg/$m^3$, effective crown fuel bulk density was 0.1325 kg/$m^3$.

Crown Fuel Characteristics and Fuel Load Estimation of Pinus densiflora S. et Z. in Bonghwa, Gyeongbuk (경북 봉화 지역 소나무림에 대한 수관연료 특성과 연료량 추정)

  • Jang, Mina;Lee, Byungdoo;Seo, Yeonok;Kim, Sungyong;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.402-407
    • /
    • 2011
  • The objectives of this study were to analyze the crown vertical structure, crown bulk density, and to develop regression models for predicting crown fuel load using the data from 10 destructively sampled Pinus densiflora trees in Bonghwa, Gyeongbuk. The fuel loads were observed higher in the middle portion of the vertical distribution of crown followed by the lower portion and upper portion of Pinus densiflora, respectively. Approximately 25% crown fuel load was found in the needle while 33% was observed in the branches with <1 cm diameter with a total of 58% available fuel loads. The average crown bulk density was $0.45kg/m^3$, and $0.27kg/m^3$ of this was available in the needles and branches with <1 cm diameters. The resulting models in linear equations were able to account for 84% and 88% of the observed variation, while the allometric equations with diameter at breast height as the single predictor showed better results to account for 90% and 95% of the observed variation in the available crown fuel loads and total crown fuel loads, respectively. The suggested equations in this study could provide quantitative fuel load attributes for crown fire behavior models and fire management of red pine stands in Bonghwa areas.

Allometric Equations of Crown Fuel Biomass and Analysis of Crown Bulk Density for Pinus densiflora (소나무 수관 부위별 연료량 추정식 개발 및 수관연료밀도 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Kim, Seon-Young;Yoon, Suk-Hee;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • To analyze the characteristics of canopy fuel in Pinus densiflora stand, which is essential to assess the crown fire hazard, allometric equations for estimation of crown fuel biomass were developed by subjectively categorized crown fuel component and crown bulk density was analyzed by available fuel component categories. Ten trees were destructively sampled at Pinus densiflora stand in Mt. Palgong in Daegu and their crown fuels were weighed separately for each fuel category by size classes and by living and dead. Regression equations that estimate crown fuel load by diameter at breast height(D) or additional total height(H) were derived. The adjusted coefficient of determination values were the highest (${R^2}_{adj}$=0.835-0.996) and standard error of estimate were the lowest (SEE=0.074-0.638) in the allometric equation lnWt=${\alpha}+{\beta}lnD+{\gamma}lnH$ in average. However, in needles and small branches categories, the differences in ${R^2}_{adj}$ and SEE between equations were not significant. Crown bulk density (CBD), which was calculated by crown fuel load divided by crown volume, was 0.067 kg/$m^3$ in average when only needles were considered as available crown fuel and 0.097 kg/$m^3$ when needles and branches (0-0.5 cm diameter) were considered. The increments of CBD of needles and small branches were little even when diameter at breast height increased.

Above-ground Biomass and Crown Fuel Characteristics of Pinus densiflora in Yangyang, Gangwon Province (강원도 양양지역 소나무림의 지상부 바이오매스와 수관층 연료특성에 관한 연구)

  • Kim, Sungyong;Lee, Youngjin;Jang, Mina;Seo, Yeonok;Koo, Kyosang;Jung, Sungcheol;Kim, Kyungha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.244-250
    • /
    • 2012
  • The objective of this study was to analyze the above-ground biomass and crown fuel characteristics of Pinus densiflora stands in Yangyang, Gangwon province. A total of thirteen representative trees were destructively sampled in Yangyang region. The results showed that the stem density ($g{\cdot}cm^{-3}$) was 0.347~0.409, whereas the above-ground biomass expansion factors ranged from 1.251~1.419. In terms of crown fuel biomass, the above-ground biomass was $161.6Mg{\cdot}ha^{-1}$ while the stem biomass, branch biomass and needle biomass were $126.4Mg{\cdot}ha^{-1}$, $29.3Mg{\cdot}ha^{-1}$ and $5.9Mg{\cdot}ha^{-1}$, respectively. Needles and twigs with less than 1 cm diameter accounted 45.2% of the total crown fuel load. The available crown bulk density, which was calculated by dividing the crown fuel load to the crown volume, was $0.178kg{\cdot}m^{-3}$. The results of this study on the biomass and carbon stocks estimation of the Pinus densiflora together with the crown fire hazard assessment based on crown fuel loads are very significant information for the forest managers.

Effects of Forest Tending Works on the Crown Fuel Characteristics of Pinus densiflora S. et Z. Stands in Korea (숲가꾸기 사업이 소나무림의 수관연료특성에 미치는 영향)

  • Kim, Sungyong;Lee, Byungdoo;Seo, Yeonok;Jang, Mina;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The objective of this study was to analyze the changes of crown fire hazard possibility from the effects of forest tending works (FTW) in Pinus densiflora stands in Korea. The study sites were located in Youngju (FTW) and Bonghwa (Control) areas. Ten representative sample trees were destructively felled at each areas to analyze the crown fuel characteristics. The results of this study showed that crown fuel moisture content in Youngju and Bonghwa areas were 103.6% and 104.4%, respectively. The needles and twigs with less than 1cm diameter accounted 50.3% of the total crown fuel load in Youngju area and 62.0% in Bonghwa area. On the other hand, it was observed in Youngju that the canopy bulk density was $0.11kg/m^3$ lower but have 1.3 m higher average canopy base height therefore having a possibility of lower crown fire hazard as compared to Bonghwa that had higher canopy bulk density and lower canopy base height.

Allometric Equations for Crown Fuel Biomass of Pinus koraiensis Stands in Korea (잣나무림의 수관연료량 추정을 위한 상대생장식 개발)

  • Kim, Sungyong;Jang, Mina;Lee, Byungdoo;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • The objective of this study was to develop allometric equations for the estimation of crown fuel biomass of Pinus koraiensis in Korea. A total of twenty four representative sample trees were destructively sampled in Gapyeong, Hongcheon, and Jeongseon. Crown fuels were weighed separately for each fuel category by size class and by living and dead. The results of this study showed that the needles contributed the largest biomass (16.6 kg, 34.7%), followed by live branches with size ranging from 2~4 cm (9.0 kg, 18.9%), 1~2 cm (6.6 kg, 13.8%), <0.5 cm (5.1 kg, 10.6%), 0.5~1 cm (4.9 kg, 10.3%), and dead branches (3.2 kg, 6.8%), while the live branches with 4 cm (2.4 kg, 4.9%) as the lowest. The adjusted coefficient of determination values were the highest ($R^2_{adj}=0.6021{\sim}9742$) and standard error of estimate were the lowest (S.E.E.=0.2018~0.7271) in allometric equation $lnWt={\beta}_0+{\beta}_1lnD$. The available fuels that are consumed during crown fires (i.e., needles and twigs with diameter less than 1 cm) comprised 55.6% of the total crown fuel biomass.

Development of Crown Fire Propagation Probability Equation Using Logistic Regression Model (로지스틱 회귀모형을 이용한 수관화확산확률식의 개발)

  • Ryu, Gye-Sun;Lee, Byung-Doo;Won, Myoung-Soo;Kim, Kyong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Crown fire, the main propagation type of large forest fire, has caused extreme damage with the fast spread rate and the high flame intensity. In this paper, we developed the probability equation to predict the crown fires using the spatial features of topography, fuel and weather in damaged area by crown fire. Eighteen variables were collected and then classified by burn severity utilizing geographic information system and remote sensing. Crown fire ratio and logistic regression model were used to select related variables and to estimate the weights for the classes of each variables. As a results, elevation, forest type, elevation relief ratio, folded aspect, plan curvature and solar insolation were related to the crown fire propagation. The crown fire propagation probability equation may can be applied to the priority setting of fuel treatment and suppression resources allocation for forest fire.

Estimation of Canopy Fuel Characteristics for Pinus densiflora Stands Using Diameter Distribution Models: Forest Managed Stands and Unmanaged Stands (직경분포모형을 이용한 소나무림의 수관연료특성 예측: 산림시업지 임분과 비시업지 임분에서)

  • Lee, Sun Joo;Kim, Sung Yong;Lee, Byung Doo;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.412-421
    • /
    • 2018
  • The objective of this study was to analyze the effects of forest management activities on canopy fuel characteristics for Pinus densiflora stands in South Korea. We used 1,085 managed stands data and 349 unmanaged stands data of the National Forest Inventory for this study, and it was estimated by using the Weibull function for the growth of stand and canopy fuel characteristics. Comparing the canopy fuel characteristics for the managed stands and unmanaged stands shows that the average canopy fuel load is about 14% higher than that of managed stands, and the canopy bulk density is also approximately 16% higher. The results of comparing growth projections for 40 years, 50 years and 60 years with the Weibull function are as follows: Over time, managed stands was predicted the maximum number of medium and large class diameter, while unmanaged stands was predicted maximum number of small and medium class diameter. From a fire fuel perspective, unmanaged stands are predicted to be of the type small class diameter and high density, which is a good condition for crown fire. In addition, Canopy fuel load, Canopy bulk density is relatively higher than managed stands, indicating that the possibility of high crown fire hazard.

The Analysis of Forest Fire Fuel Structure Through the Development of Crown Fuel Vertical Distribution Model: A Case Study on Managed and Unmanaged Stands of Pinus densiflora in the Gyeongbuk Province (수관연료 수직분포모델 개발을 통한 산불연료구조 분석: 경북지역의 소나무림 산림시업지와 비시업지를 대상으로)

  • Lee, Sun Joo;Kwon, Chun Geun;Kim, Sung Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • This study compared and analyzed the effects of forest tending works on the vertical distribution of wildfire fuel loads on Pinus densiflora stands in Gyeongbuk province. The study sites were located in Youngju and Bonghwa in Pinus densiflora stands. A total of 10 sample trees were collected for the development of the crown fuel vertical distribution model. The 6th NFI (National Forest Inventory) selected a sample point that only extracted from managed and unmanaged stands of Pinus densiflora in the Gyeongbuk province. The fitness index (F.I.) of the two models developed was 0.984 to 0.989, with the estimated parameter showing statistical significance (P<0.05). A s a results, the vertical distribution of wildfire fuel loads range of unmanaged stands was from 1m to 11m with the largest distribution at point 5m at the tree height. On the other hand, the vertical distribution of wildfire fuel loads range of the managed stands was from 1m to 15m with the largest distribution at the point of 8m at the tree height. The canopy bulk density was 0.16kg/㎥ for the managed stands and 0.25kg/㎥ for the unmanaged stands, unmanaged stands were about 1.6 times more than managed stands. This result is expected to be available for simulation through the implementation of the 3D model as crown fuel was analyzed in three dimensions.