• Title/Summary/Keyword: Crosslinked

Search Result 582, Processing Time 0.03 seconds

Characterization of Crosslinked Poly(vinyl alcohol) Membranes for the Preparation of Composite Membranes and Its Application to Pervaporation Separation (복합막 제조를 위한 가교된 폴리비닐알코올 막의 특성 평가와 이를 이용한 투과증발 분리)

  • 김연국;이정민;임지원;이영무
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.157-162
    • /
    • 1999
  • In the crosslining reaction of poly(vinyl alcohoJ)(PVA) with sulfur-succinic acid which had been established in our previous work, reaction temperature, 15$0^{\circ}C$, was so high to collapse the pore struc¬tures in support membrane for the preparation of composite membrane. Therefore, the efforts have been focused on lowering of the reaction temperature to 100$^{\circ}$C by using a catalysis, HC!. The newly established crosslinking reaction was characterized through the analysis of the chemical and thermal properties. From these results, the optimum conditions for the membrane preparation couId be drawn as followings : (i) reac¬tion temperature, 100 $^{\circ}C$,(ii) reaction time, 90 min, (iii) the concentration of the catalysis (HCD, 1.5%. Com¬posite membranes were fabricated by coating a casting solution containing PYA, sulfur-succinic acid and HCl on a support membrane followed by crosslinking it at 10$0^{\circ}C$. The resulting membranes were applied to the pervaporation separation of methyl-tert-butyl ether(MTBE)/methanol (MeOH) mixtures at 30, 40, and 5O$^{\circ}C$. The flux of 5.09 g/$m^2$hr at 5O$^{\circ}C$ and the highest separation factor of 1622 were obtained, respectively.

  • PDF

Preparation and Characterization of Proton Conducting Crosslinked Membranes Based On Poly(vinyl chloride) Graft Copolymer (Poly(vinyl chloride) 가지형 공중합체를 이용한 수소이온 전도성 가교형 전해질막의 제조와 분석)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Park, Jung-Tae;Koh, Joo-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • A graft copolymer consisting of poly(vinyl chloride) (PVC) backbone and poly(hydroxyethyl acrylate) (PHEA) side chains was synthesized via atom transfer radical polymerization (ATRP). Direct initiation of the secondary chlorines of PVC facilitates grafting of hydrophilic PHEA monomer. This graft copolymer, i.e. PVC-g-PHEA was cross-linked with sulfosuccinic acid (SA) via the esterification reaction between -OH of the graft copolymer and -COOH of SA, as confirmed by FT-IR spectroscopy. Ion exchange capacity (IEC) continuously increased to 0.87meq/g with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0wt% of SA concentration above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.025 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Media Characteristics of PVA-derivative Hydrogels Using a CGA Technique (CGA 제조기법을 응용한 PVA 하이드로젤의 담체 특성)

  • Yoon, Mi-Hae; Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.299-308
    • /
    • 2009
  • We manufactured PVA-derived hydrogels using a foam generation technique that has been widely used to prepare colloidal gas aphrons(CGA). These gels were differentiated to the conventional gels such as for medical or pharmaceutical applications, which have tiny pores and some crystalline structure. Rather these should be used in de-pollution devices or adhesion of cells or biomolecules. The crosslinkers used in this work were amino acid, organic acid, sugars and lipids(vitamins). The structures of the gels were observed in a scanned electron microscope. Amino acids gels showed remarkably higher swelling ratios probably because their typical functional groups help constructing a highly crosslinked network along with hydrogen bonds. Boric acid and starch would catalyze dehydration while structuring to result in much lower water content and accordingly high gel content, leading to less elastic, hard gels. Bulky materials such as ascorbic acid or starch produced, in general, large pores in the matrices and also nicotinamide, having large hydrophobic patches was likely to enlarge pore size of its gels as well since the hydrophobicity would expel water molecules, thus leading to reduced swelling. Hydrophilicity(or hydrophobicity), functional groups which are involved in the reaction or physical linkage, and bulkiness of crosslinkers were found to be more critical to gel's cross linking structure and its density than molecular weights that seemed to be closely related to pore sizes. Microscopic observation revealed that pores were more or less homogeneous and their average sizes were $20{\mu}m$ for methionine, $10-15{\mu}m$ for citric acid, $50-70{\mu}m$ for L-ascorbic acid, $30-40{\mu}m$ for nicotinamide, and $70-80{\mu}m$ for starch. Also a sensory test showed that amino acid and glucose gels were more elastic meanwhile acid and nicotinamide gels turned out to be brittle or non-elastic at their high concentrations. The elasticity of a gel was reasonably correlated with its water content or swelling ratio. In addition, the PVA gel including 20% ascorbic acid showed fair ability of cell adherence as 0.257mg/g-hydrogel and completely degraded phenanthrene(10 mM) in 240 h.

The Evaluation of Biocompatigbility of Collagen/Chondroitin Sulfate Sponge as a Scaffold for Corneal Stromal Layer (각막 간질 대체물로 콘드로이틴 설페이트가 결합된 콜라젠 스폰지의 생체 적합성 평가)

  • Jang, In-Keun;Ahn, Jae-Il;Seo, Yeong-Gwon;Kim, Jae-Chan;Song, Kye-Yong;Park, Jung-Keug
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.439-443
    • /
    • 2006
  • Biocompatibility and tissue regenerating capacity are essential characteristics in the design of collagenous biomaterials for tissue engineering. Attachment of glycosaminoglycans to collagen may add to these characteristics by creating an appropriate micro-environment. In this study, porous type I collagen matrices were crosslinked using dehydrothermal treatment and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide, in the presence and absence of chondroitin sulfate (CS). The scaffold like discs in 3 mm diameter were inserted into the intralamellar stromal pockets of rabbit cornea. In 8 weeks of follow up, clinical evaluation including corneal neovascularization, opacity and transparency of the graft scaffold was performed, and the inflammatory reaction and migration of corneal fibroblast were evaluated histologically. No inflammation, neovascularization and opacity in any of the implant were observed. CS increased the corneal fibroblast invasion and the transparency. It is concluded that the type I collagen sponge showed a biocompatibility in corneal stromal layer and addition of CS slightly improved the quality of the bioartificial corneal stromal layer. These results could be useful for the development of corneal substitutes.

Effective Use of Orange Juice Residue for Removing Heavy and Radioactive Metals from Environments

  • Inoue, Katsutoshi;Zhu, Yushan;Ghimire, Kedar-Nath;Yano, Masayuki;Makino, Kenjiro;Miyajima, Tohru
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.264-269
    • /
    • 2001
  • Large amounts of orange juice are produced in Japan every yea.. Accompanied by the production of orange juice, large amount of juice residues are also generated in nearly the same amounts with juice. Although, at present, some of these residues are marketed as a feed for cattle after drying and mixing with lime, the marketing price is lower than its production cost and the difference is paid by the consumers as a part of the price of orange juice. In the present work, we developed new innovative use of orange juice residue, a biomass waste, as adsorption gel for removing toxic heavy metals such as lead. arsenic, selenium and so on as well as radioactive elements such as uranium and thorium from environments. The major components of orange juice residue are cellulose. hemicellulose and pectin, which are converted into pectic. acid, an acidic polysaccharide, by means of saponification with concentrated sodium hydroxide solution. In the previous work, we found that crosslinked pectic acid gel strongly an selectively adsorbs lead over other metals such as zinc an copper. On the other hand. it is well known that polysaccharides such as cellulose can be easily phosphorylated and that phosphorylated polysaccharides have high affinity to uranium and thorium as well as some trivalent metals such as ferric iron and aluminum. Taking account of the noticeable characteristics of these polysaccharides, 2 types of adsorption gels were prepared from orange juice residue: one is the gel which was prepared by saponificating the residue followed by crosslinking with epichlorohydrin and another is that prepared by crosslinking the residue followed by phosphorylation. The former gel exhibited excellent adsorptive separation behavior for lead away from zinc owing to high content of pectic acid while the latter gel exhibited that for uranium and thorium. Both types of adsorption gels exhibited high affinity to ferric iron, which enables selective and strong adsorption for some toxic oxo-anions of arsenic (V and III), . selenium and so on via iron loaded on these gels. These results demonstrate that biomass wastes such as orange juice residue can be effectively utilized fer the purpose of removing toxic heavy or radioactive metals existing in trace or small amounts in environments.

  • PDF

Swelling and Drug Release Characteristics of PVP Hydrogel Polymerized by $\gamma$-Irradiation Method (김마선 조사법으로 합성한 PVP하이드로겔의 팽윤과 약물방출특성)

  • 심창구;오정숙;신병철
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.511-519
    • /
    • 1993
  • The short and variabke transit of drug throught GI tracj and the inter-and intra-subject variations of the transit restrict the sustained drug absorption after oral adminstration. These restrictions may be solved by retaining the dosage forms in the stomach. Then the dosage form will act as a platform which releases the drug slowly and makes the GI absorption occur for a long time. In this study, as the platforms, PVP hydrogels were synthesized by chemical and y-irradiation method in the cylindrical test tube. The chemical method means the synthesis of the hydrogel by heating the mixed solution of N-vinyl-2-pyrrolidone [monomer], acrylated albumin [crosslinking agent], 2, 2'-agobis(2-methylpropionitrile) [initiator] and proxyphylline [drug] at $65^{\circ}C$ for 5 hr. The $\gamma$-irradiation method means the synthesis of the hydrogel by irradiation with $^{60}$ Co $\gamma$-ray of the mixed solution of the monomer, acrylated albumin, and flurbiprofen [drug] at room temperature with total 0.2 Mrad for 3 hr. Our intention is to design the hydrogel tablet (diameter : 1.20 cm, thickness : 0.60 cm) which swells in the gastric fluid after oral administration to such a size that passing through the pylorus could be inhibited during the period of drug release. After releasing drug, the hydrogel should be degraded by the enzymeatic digestion in the stomach, or by hydrolysis and eventually solubilized. Thus, in votro tests were performed to examine the factors that affect swelling and drug release from the PVP hydrogels. Experimental results show that the hydrogels swell to a size larger than the diameter of the pylorus(l.3$\pm$0.7 cm) and the hydrogel prepared by the chemical method is digested by pepsin. But the hydrogel prepared by the $\gamma$-irradiation method was not digested by the pepsin and just collapsed with time. Thus, the swelling of the hydrogel synthesized by $\gamma$-irradiation was independent albumin acrylation time and pepsin concentration. But drug content and radiation dose affected the swelling and drug release kinetics of the hydrogel. Drug release from the hydrigels was prolonged up to about 24 hr. Therefore, it was concluded that by adjusting these factors, the albumin-crosslinked PVP hydrogel synthesized by $\gamma$-irradiation method is expected to be retained in the stomach for up to 60hr and be a potential platform of drugs for long-term GI absorption.

  • PDF

Characterization of Crosslinks of Maleic Anhydride-Grafted EPDM/Zinc Oxide Composite Using Dichloroacetic Acid/Toluene Cosolvent and Extraction Temperature (디클로로아세트산/톨루엔 공용매와 추출 온도를 이용한 무수말레산-그래프트 EPDM/산화 아연 복합체의 가교 특성 분석)

  • Kwon, Hyuk-Min;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.288-293
    • /
    • 2013
  • Crosslink characteristics of maleic anhydride-grafted EPDM (MAH-g-EPDM)/zinc oxide composite were investigated by weight losses after dichloroacetic acid (DCA)/toluene cosolvent extraction at different temperatures and by measurement of crosslink densities. The chemical changes were analyzed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The weight losses by extraction at high temperature ($90^{\circ}C$) were remarkably greater than those at room temperature and those by DCA/toluene cosolvent extraction were greater than those by toluene one by more than 5 times. The crosslink densities were measured after the solvent extraction, and the second crosslink densities were higher than the first ones. The first crosslink density was lower when the extraction temperature was high, and it was much lower for the toluene extraction than for the DCA/toluene cosolvent extraction. The second crosslink density of the sample extracted with DCA/toluene cosolvent was greater than that extracted with toluene. The extracted components were depending on the extraction solvents and temperatures, for example; only strong crosslinked networks were remained when extracting with DCA/toluene cosolvent at high temperature, while only uncrosslinked polymer chains were extracted when extracting with toluene at room temperature. Therefore, crosslink characteristics of the MAH-g-EPDM/zinc oxide composite can be analyzed by comparison of the extracted components according to the extraction solvents and temperatures and by measurement of successive crosslink densities.

Synthesis of Electroactive PAAc/PVA/PEG Hydrogel Soft Actuator by Radiation Processing and Their Dynamic Characteristics (방사선을 이용한 전기 활성 PAAc/PVA/PEG 하이드로겔 소프트 액추에이터의 제조 및 구동 특성 분석)

  • Shin, Yerin;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.698-706
    • /
    • 2019
  • Over the last few decades, there have been a lot of efforts to develop soft actuators, which can be external stimuli-responsive and applied to the human body. In order to fabricate medical soft actuators with a dynamic precision control, the 3D crosslinked poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels were synthesized in this study by using a radiation technique without noxious chemical additives or initiators. After irradiation, all hydrogels showed high gel fraction over 75% and the ATR-FTIR spectra indicated that PAAc/PVA/PEG hydrogels were successfully synthesized. In addition, the gel fraction, equilibrium water content, and compressive strength were measured to determine the change in physical properties of PAAc/PVA/PEG hydrogels according to the irradiation dose and content ratio of constituents. As the irradiation dose and amount of poly(ethylene glycol) diacrylate (PEGDA) increased, the PAAc/PVA/PEG hydrogels showed a high crosslinking density and mechanical strength. It was also confirmed that PAAc/PVA/PEG hydrogels responded to electrical stimulation even at a low voltage of 3 V. The bending behavior of hydrogels under an electric field can be controlled by changing the crosslinking density, ionic group content, applied voltage, and ionic strength of swelling solution.

Oil Absorptive Properties of Polypropylene Knit Fabric Treated with Oleophilic Acrylic Resin (친유성 아크릴 수지로 처리된 폴리프로필렌 편직물의 유흡착 성질)

  • Jeong, Hwa-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.528-535
    • /
    • 2016
  • Two types of oleophilic acrylic prepolymers were prepared by the solution copolymerization of either ethyl acrylate (EA) or lauryl acrylate (LA) with hydroxy ethyl acrylate (HEA). For the formation of oil-absorbent materials, a mixed solution of the prepolymer and hexamethylene diisocyanate (HDI) as a cross-linker in toluene was applied to polypropylene knit velvet fabric through the conventional pad-dry-cure procedure. The gel fraction of the crosslinked resin, EA-HEA-HDI, increased with increasing feed ratio of HEA to total acrylate or HDI concentration. The oil absorbancy and retention ratio of the prepared materials were compared according to the add-on ratio of resin to fabric, and were assessed with n-decane, toluene, soybean oil, lubricant and bunker C oil as test oils. The optimal oil absorbancy of the materials were observed at around 6% of the add-on ratio for all these oils except for soybean oil. On the other hand, the oil retention ratio increased as the add-on ratio increased. Futhermore, heavier and more viscous oil generally showed higher oil retention ratios. In addition, the oil absorbancy of the materials treated with LA-HEA-HDI resin was higher than that treated with EA-HEA-HDI resin, which showed that the acrylic resins are more absorptive with increasing length of their side alkyl chain.

Pervaporation Separation of Ethanol Aqueous Solution through Carbonate-type Polyurethane Membrane III. The Effect of Zwitterionic Group (카보네이트형 폴리우레탄막을 이용한 에탄올 수용액의 투과증발분리 III. 양쪽이온성기에 의한 영향)

  • Oh, Boo Keun;Lee, Young Moo;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.605-613
    • /
    • 1992
  • NCO-terminated prepolymers were synthesized by reacting carbonate-type polyol(PTMCG)($M_w=1,000$ and 2,000) with MDI and N-methyldiethanolamine, as a chain extender. Carbonate-type polyurethane containg zwitterionic group was prepared by reacting the prepolymer with 1,3-propane sultone. From the IR and NMR spectra of model reactions, it was known that the ionization occurred under the same condition. The structure of zwitterionic carbonate-type polyurethane(ZPU) therefore could be confirmed from the model reactions. Glass transition temperature(Tg) ranged between $-15{\sim}-30^{\circ}C$ from the thermal data. Tg was between $-15{\sim}-18^{\circ}C$ for a series of ZPU10 samples and between $-25{\sim}-26^{\circ}C$ for a series of ZPU20 polymers. Tensile strength increased with mole ratio of ionic content. On the contrary, elongation was rather dropped with mole ratio of ionic content. ZPU10-30 having better tensile strength and less elongation was selected as a membrane for the concentration of ethanol aqueous solution through pervaporation. To obtain the better selectivity, it was crosslinked with HMDI. In the swelling test, it showed the higher swelling degree at around 50wt% ethanol concentration due to the plastization effect of ethanol. To optimize the separation capacity, two operating factors-feed concentration and temperature-were considered. The overall separation capacity was as follows : separation factor, 2~83.2 ; the flux, $25.4{\sim}58.8g/m^2hr$.

  • PDF