• Title/Summary/Keyword: Crosslink

Search Result 226, Processing Time 0.029 seconds

Preparation and Characterization of Removal-type Acrylic Pressure-Sensitive Adhesive (4원 아크릴계 박리형 점착제의 제조와 특성에 관한 연구)

  • Seo, Young-Ok;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.225-236
    • /
    • 2001
  • In order to improve the properties of the copolymer and the terpolymer that was used as removal-type pressure sensitive adhesive(PSA), we synthesized quaterpolymer with the variation of the types of monomer, initiator, and solvent, and concentration, the monomer/solvent ratio, reaction temperature and time. and determined the properties of this adhesive: the viscosity, molecular weight, conversion, solid content and structure of polymer. The prepared polymer was crosslinked by changing the type of crosslinking agent and concentration, and then we investigated the characteristics or adhesive such as peel adhesion, shear adhesion, heat resistance, weathering resistance and peel adhesion to aging. The optimum performance of RA/2- EHA/MMA/2-HEMA as a PSA were obtained when benzoyl peroxide was used as an initiator with the reactant mixture consisted of 80% BA and 2-EHA, 15%, MMA, and 5% 2-HFMA. The optimum reaction temperature and time were $80^{\circ}C$ and 8 hours, respectively. For BA/2-EHA/MMA/AA, the optimum performance was obtained when the polymerization was performed at the monomer composition of 80% BA/2-EHA, 15% MMA, and 5% AA. BPO was used as initiator and the optimum reaction temperature and time were identical to those of BA/2-EHA/MMA/ 2-HEMA. Isocyanate and melamine were used to crosslink BA/2-EHA/MMA/2-HEMA and BA/2-EHA/MMA/AA, respectively. No effect on the type of cross-linking agent on the peel adhesion was observed with aging. The quarterpolymers crosslinked with melamine left residues on the counter surface after weathering resistance test, while the polymers crosslinked with isocyanate did not.

  • PDF

Variation of Adhesion Characteristics of Acryl Copolymer/Multi-functional Monomer Based PSA by UV Curing (자외선 경화에 의한 아크릴 공중합체/다관능성 단량체 복합 감압점착제의 접착특성 변화)

  • Ryu, Chong-Min;Pang, Bei-Li;Kim, Hyung-Il;Park, Ji-Won;Lee, Seung-Woo;Kim, Hyun-Jung;Kim, Kyung-Man
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.315-320
    • /
    • 2012
  • Ultra violet (UV) curable pressure sensitive adhesives (PSA) were prepared by controlling both the structure of acryl copolymer and the functionality and content of multi-functional monomers. Acryl copolymer worked as the base polymer for giving the tackiness. Multi-functional monomers were used to vary the crosslinked structure and the degree of crosslink. Acryl copolymer showed the reduced peel strength after UV curing by decreasing the content of 2-ethylhexyl acrylate in the monomer composition. Both the peel strength of PSA and the content of residue found on silicon wafer decreased after UV curing by increasing the functionality of multi-functional monomers. UV curable PSA containing 20 phr six-functional monomer showed the higher peel strength before UV curing and the lower peel strength and the least residue on silicon wafer after UV curing.

The Fixation Effects in Immunohistochemistry and Electron Microscopy Using Low Energy of Microwave (LEM) in Human Gastric Adenocarcinoma and HeLa Cell (사람 위선암과 HeLa 세포에 관한 저에너지 마이크로파 고정효과의 조직화학 및 전자현미경적 연구)

  • Yang, Seung-Ha;Son, Tae-Ho;Shin, Kil-Sang
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.185-197
    • /
    • 2001
  • Human gastric adenocarcinomas are fixated with low energy of microwave (LEM) to study fixation effects in level of ultrastructure and antigenicity of the cancer. For the Ag-Ab reactions , the LEM fixated sdenocarcinomas are incorporated with monoclonal mouse anti-human p53 (IgG2b, kappa) and rabbit anti human cerbB-2. The retrieval of antigenicity are easily recognizable in the LEM fixated sections compared with that of frozen sections which show often diffused colour reactions. And the LEM fixation methods have preserved ultrastructures of the adenocarcinoma, but it was often difficult to maintain constancy in fixation effects. For the constancy, LEM was coupled with low concentration of chemical fixatives, such as glutaraldehyde (<1%) and $OsO_4$ (<0.5%). The results were acceptable, but there are tendencies that the adenocarcinoma requisitioned rather weak microwave energy to come into the optimal fixation effects. Therefore , cultured HeLa cells were fixated with lower energy of microwave than that used to the adenocarcinoma. The ultrastructures of the single HeLa cell have been preserved. The results may imply that a different energy levels of microwave are requisitioned in accordance with kinds of cells and tissues for the optimal fixation effects. It is reported and discussed that the fixation methods of LEM used in this work could be applied routinely to conceal a insufficient diffusion rate of chemical fixatives into some kinds of cancer without compromising the ultrastructures as well as to improve antigenic quality of frozen sections.

  • PDF

Anhydrous Crosslinked Polymer Electrolyte Membranes Based On ABA Triblock Copolymer (ABA 트리블록 공중합체를 이용한 무가습 가교형 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Lee, Do-Kyoung;Roh, Dong-Kyu;ShuI, Yong-Gun
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2009
  • ABA type triblock copolymer of poly(hydroxyl ethyl acrylate )-b-polystyrene-b-poly(hydroxyl ethyl acrylate), i.e. PHEA-b-PS-b-PHEA, was synthesized throughatom transfer radical polymerization (ATRP). This block copolymer was thermally crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification between the -OH groups of PHEA in block copolymer and the -COOH groups of IDA. Upon doping with ${H_3}{PO_4}$ to form imidazole-${H_3}{PO_4}$ complexes, the proton conductivity of membranes continuously increased with increasing ${H_3}{PO_4}$ content. The PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ polymer membrane with [HEA]:[IDA]:[${H_3}{PO_4}$]=3:4:4 exhibited a maximum proton conductivity of 0.01 S/cm at $100^{\circ}C$ under anhydrous conditions. Thermal gravimetric analysis (TGA) shows that the PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ complex membranes were thermally stable up to $350^{\circ}C$, indicating their applicability in fuel cells.

Determination of Interaction Parameter χ of the 1,2,3-Triazole Crosslinked Polymer (1,2,3-트리아졸 폴리머의 상호계수 χ의 결정)

  • Lee, Dong-Hoon;Lee, Sookyeong;Kim, Kyoung Tae;Paik, Hyun-Jong;Jeon, Heung Bae;Min, Byoung Sun;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • The crosslinking density of polymer can be quantitatively calculated by the Flory-Rehner equation using the swelling experimental data and the lattice constant ${\beta}_1$ of interaction parameter (${\chi}$) in this equation should be chosen have used cautiously. This ${\beta}_1$ is the experimental data by rule of thumb, and researchers have used little different values respectively. Generally, the average molecular weight between crosslink points $M_c$ in the Flory-Rehner equation and the Mooney-Rivlin equation have the same value, and ${\beta}_1$ can be calculated when the $M_c$ in the Flory-Rehner equation is given. Therefore, in this research, firstly we calculated the $M_c$ using the selected ${\beta}_1$ (=0.34) and the swelling experimental data of 1,2,3-triazole polymer from the Flory-Rehner equation, secondly the $M_c$ from the Mooney-Rivlin equation is calculated by the tensile experimental data, and finally two $M_c$ were compared. As a result, two $M_c$ values were almost the same, and it was proved that the ${\beta}_1$ (=0.34) was selected properly.

A study on the Characteristic of Waste Ground Rubber Tire Powders with Pre-treatment Process for Recycling (전처리 공정에 따른 폐타이어 재생 고무분말의 특성연구)

  • Park, Jongmoon;An, Ju-Young;Park, Jin-Eui;Bang, DaeSuk;Kim, Bong-Suk;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.55-61
    • /
    • 2015
  • In this study, mechanical properties of waste ground rubber tire powder were investigated to evaluate the influence of pre-treatment process for recycling. The tensile test, fracture test and morphology observation were carried out using various kinds of waste ground tire powders, which were produced by grinding and devulcanization process, respectively. As a results, it was found that the produced rubber powder through grinding process increased its tensile strength and elongation with decreasing particle size because of decreasing surface area. Devulcanized rubber powder also increased its tensile strength and elongation by de-crosslink with sulfur. It could be also suggested that devulcanization treatment after grinding process was more efficient recycling process for both increasing tensile property and fracture elongation of waste ground rubber tire powders.

Current and Future Trends of Accelerators and Antidegradants for the Tire Industry

  • Hong, Sung-W.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.156-176
    • /
    • 1999
  • Rubber chemicals such as accelerators, antidegradants, vulcanizing agents, processing agents and retarders are very important to the production and protection of tires and rubber goods. The use of accelerators and antidegradants are evaluated in various tire components. This paper will focus on how to vulcanize tires economically and maintain the physical properties of each tire component without severe degradation due to oxygen, heat and ozone. Also, new non-nitrosoamine accelerators and non-staining antiozonants will be discussed. Lastly, the future requirements of antidegradants and accelerators in the tire industry will be reviewed. Tires have been vulcanized with Sulfenamides as primary accelerators and either Guamdine's or Thiurams as secondary accelerators to achieve proper properties at service conditions. However, interior components such as the carcass can be vulcanized with Thiazoles as a primary accelerator to cure faster than the external components. Using the combination of Sulfenamide with secondary accelerators in a tire tread compound and the combination of a Thiazole and Guanidine in a carcass compound will be presented with performance data. Uniroyal Chemical and another Rubber Chemical Manufacturer have developed, "Tetrabenzyl Thiuram Disulfide," (TBzTD) as a non-Nitrosoamine accelerator, which could replace Nitrosoamine generating Thiurams. This new accelerator has been evaluated in a tread compound as a secondary accelerator. Also, Flexsys has developed N-t-butyl-2-benzothiazole Sulfenamide (TBSI) as a non-Nitrosoamine accelerator which could replace 2-(Morpholinothio) -benzothiazole (MBS), a scorch delayed Sulfendamide accelerator. TBSI has been evaluated in a Natural Rubber (NR) belt skim compound vs. MBS. An optimum low rolling resistant cure system has been developed in a NR tread with Dithiomorpholine (DTDM). Also, future requirements for developing accelerators will be discussed such as the replacement of DTDM and other stable crosslink systems. Antidegradants are divided into two different types for use in tire compounds. Internal tire compounds such as apex, carcass, liner, wire breaker, cushion, base tread and bead compounds are protected by antioxidants against degradation from oxygen and heat due to mechanical shear. The external components such as sidewall, chafer and cap tread com-pounds are protected from ozone by antiozonants and waxes. Various kinds of staining and non-staining antioxidants have been evaluated in a tire carcass compound. Also, various para-phenylene diamine antiozonants have been evaluated in a tire sidewall compound to achieve the improved lifetime of the tire. New non-staining antiozonants such as 2, 4, 6-tris-(N-1, 4-dimethylpentyl-p-phenylene diamine) 1, 3, 5 Trizine (D-37) and un-saturated Acetal (AFS) will be discussed in the tire sidewall to achieve better appearance. The future requirements of antidegradants will be presented to improve tire performance such as durability, better appearance and longer lasting tires.

  • PDF

Curing behavior of Photo-Curable Materials by Photo-Shrinkage Test (광원 경화형 소재의 수축률평가를 통한 광경화 거동 평가)

  • Park, Ji-Won;Bae, Kyung-Yul;Kim, Pan-Seok;Lim, Dong-Hyuk;Kim, Hyun-Joong;Cho, Jin-Ku;Kim, Baek-Jin;Lee, Sang-Hyeup
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • Photo-curable material can be crosslinked among molecules by light source such as UV and visible light materials. Material properties are controlled by crosslink reaction. Shrinkage is occured during the curing reaction of material structure. Phenomenon of shrinkage stress occurs inside the product and reduce the stability of the product causes problems. Heat shrink the evaluation of the phenomenon has been formalized. But the evaluation of photo shrink is not enough. In this experiment, real-time contract with shrinkage tester phenomena and analysis degree of shrinkage of the material differences. According to the research, experimental results and theoretical analysis of the results were big differences. Shrinkage, especially for a number of different functional groups that were very different theory. These differences are occurred by the molecular structure different and not enough reaction.

A Study on UV Degradation of SBR and NR Containing Polymeric UV Stabilizer (고분자형 자외선 안정제를 함유한 SBR과 NR의 UV 노화 거동에 관한 연구)

  • Kaang, Shin-Young;Nam, Kyoung-Tae;Hong, Chang-Kook;Chae, Kyu-Ho
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.182-193
    • /
    • 2006
  • The retardation effects of a new polymeric UV stabilizer, DGEBA-HALS, on the UV degradation of SBR and NR were investigated in this study. The UV degradation behaviors of three different rubber compounds, without any photostabilizer and with commercial Cyabsorb UV-3529 and DGEBA-HALS, were compared. Also, the physical characteristics such as Young's modulus, tensile strength, blow-off deformation and crosslink density were examined. The Young's modulus was increased by UV irradiation for all samples, and the tensile strength, after UV irradiation, of the compound with UV stabilizer was better than that of the compound without stabilizer. Especially, the tensile strength of UV irradiated NR was improved by adding DGEBA-HALS. The results of blow-off deformation were in accord with those of Young's modulus. The degree of transmission of SBR compounds obtained from UV-vis transmission spectra was improved about 4% by adding the UV stabilizer. Commercial Cyabsorb UJV-3529 and DGEBA-HALS showed similar trends of transmission. The SEM photographs of SBR surface showed that the size of cracks created by UV irradiation became smaller by adding UV stabilizer. In particular, it is observed that the stabilization effect of DGEBA-HALS was better than that of commercial Cyabsorb UV-3529.

A Study on the Life Time Prediction and Acid-Heat aging Property of NBR Rubber for Fuel Cell Gasket (연료전지 카스켓용 NBR 고무의 산-열 노화 특성과 수명예측에 관한 연구)

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Seok-Jin;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.20-31
    • /
    • 2007
  • Material characteristics and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the NBR compound was prepared by sulfur-cure system, and was used in predicting the lifetime of rubber gasket made by the compound. The accelerated material aging was investigated at different temperatures at 120, 140 and $160^{\circ}C$ and aging time from 3 hours to 600 hours at 5, 6, 7 vol %. of $H_2SO_4$ concentrations The rubber strips were placed in acid solution using pyrex g1ass tube. Both ends of pyrex g1ass tube were sealed to avoid evaporation of solution during heating at given time. The material test and accelerated acid-heat aging test were carried out to predict the useful life of NBR rubber gasket for a fuel cell stack. In order to investigate the effects of acid-heat aging on the properties of the NBR, tensile strength, elongation at break, hardness and crosslink-density were measured. The tensile strength decreases as the $H_2SO_4$ concentrations and temperature increase. Results were evaluated using Arrhenius equation.