• Title/Summary/Keyword: Crossing Tunnel

Search Result 66, Processing Time 0.024 seconds

The study for Design of Active suspension system for Railway Vehicle (철도차량용 능동형 현가 시스템 설계에 대한 연구)

  • Lee Nam-Jin;Kim Chul-Gun;Kim Jin-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.369-374
    • /
    • 2004
  • Nowadays, the more speedy and functional railway vehicles are required by customers, the more broad boundary conitions of train's running are present. At this condtion, it is difficult for the traditional concept of suspension system which has the constant characteristics dependant on the running condition to meet the advenced requirements such as high ride quality. So, the active suspension should be designed to supplied the optimized suspensnion condition actively and to perform the optimal ride quality on the irregula running condition such as on the enterance or exitance of the tunnel or on the crossing the high speed train each others. On this study, the train dynamic model, integration of active suspension system, and the control logic would be proposed, and the advanced performace of train would be shown though the simulation tests.

  • PDF

The Comparison of Wild Birds Movement between Eco-Corridor and Neighboring Crossing Road (생태통로와 주변도로에서 야생조류의 이동 비교)

  • Park, Chan-Ryul;Lee, Jang-Ho;Kang, Wan-Mo
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.5
    • /
    • pp.639-648
    • /
    • 2011
  • We recorded the movement of wildbirds nine times at Hoam 1st Tunnel, Kkachisan Park, Deungneung pass to compare the movement between eco-corridor and neighboring crossing road from June to September, 2006. Among three areas, birds did not prefer the eco-corridor at pass type such as Kkachisan Park and Deungneung pass, however number of species and individuals were high at the eco-corridor at Hoam 1st Tunnel. Over 90m width and the slope location of eco-corridors can be beneficial for wild birds to enhance the movement along eco-corridors between isolated two patches. Average foliage volume under two meters showed the relation with bush nesters, and that from 7 to 8m had the highest relationship with canopy nesters. In Seoul city, target species should be considered at the construction of eco-corridors according to site characteristics, but Paradoxornis webbianus could be suggested as a main target species at eco-corridors. To enhance the movement of diverse wildbirds, we would implement that eco-corridors could be located at the slope area with the size of 1ha (over 90m width), eco-corridors could be planted and managed with the high foliage volume of shrub layer under twometers and canopy layer over 8 meters.

Safe Navigation Plan for Dredging Operations to build Sunken Tunnel for Access Road between Busan-Geoje (부산-거제간 연결도로 침매터널공사의 준설작업에 따른 안전통항방안)

  • Kim, Jung-Hoon;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.825-831
    • /
    • 2006
  • This research does by purpose that present safe navigation plan for ships during doing dredging construction with dredger crossing waterway of Gadeok Dredging operations need to build sunken tunnel that cross the bottom of the sea under waterway of Gadeok for access road construction between Busan- Geoje. Accordingly, dredger must cross and dredge waterway of Gadeok fatally. There is possibility of marine accident of collision for latent danger situation of ships to navigate waterway of Gadeok relatively. Therefore, safe navigation plan of ship is groped in reply and its countermeasure is presented. Firstly, navigating traffic in daytime was forecasted less than 20% of its maximum capacity through estimating the traffic volume and traffic congestion The proposal was presented to execute dredging operations in three-step and to establish temporary waterway after reviewing waterway design principles. The role of VTS center was emphasized in the new Busan Port, lastly.

A Study on the Permeability Reduction Methods of the Riverbed Ground during Urban Railway Tunnel construction (도시철도터널공사 시 하저통과구간의 지반투수저하 공법에 대한 연구)

  • Kim, Joon-Jeong;Cho, Kook-Hwan;Lee, Jun-Seok
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.551-557
    • /
    • 2007
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. Firstly, the various grouting methods are theoretically reviewed and compared based on the previous research papers and case study results. It is also evaluated the grouting methods in view of a safe construction of the river crossing railway tunnel. Baced on the literature review and previous construction data, the design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, is suggested. Two injection methods namely, Natural Durable Stabilizer(N.D.S) and Space-Multi Injaction Grouting(S.M.I) methods, are introduced as new approach methods which can be adopted to modify the riverbed ground. In order to evaluate the ground that grouted and modified by the N.D.S and S.M.I method, the pilot test programmes including the field and laboratory permeability tests, are carried out in the river crossing tunnel construction sites. The results obtained from pilot test programme, are also reviewed. In conclusion, the grouting efficiency of the S.M.I method using the non-alcalimeter silica sol is better than that of NDS method using cement. In addition, it hopes that the research results are contributed to develop the grouting design technology.

  • PDF

A Study of Stability Analysis for Tunnelling in Fault Zone (단층대 터널굴착시 안정성 확보에 관한 연구)

  • Hong, Chang-Soo;Hwang, Dae-Jin;Lee, Kang-Ho;Lee, Yong-Hun;Lee, Chang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1275-1282
    • /
    • 2005
  • This paper deals with the numerical study for excavation crossing the fault zone and the change of support pattern in field. The numerical analyses by FLAC program were performed to evaluate the suitable support pattern influenced by the width of Fault Zone, considering rock mass condition(RMR classification). Based on the results, it is found that partial reinforcement or degrading support pattern is suitable, when the width of Fault is under 3m. But when the width of Fault is more than 6m(0.5D), extra support pattern for fault zone is acceptable. At field, this result is generally used as a guide in the construction of roadway tunnel, but it is also possible to vary this assessment along the condition of fault.

  • PDF

The Numerical Analysis off the Flow-field Around the Korean Tilting Train Express (한국형 틸팅 열차 주위 유동장 수치 해석)

  • 윤수환;김태윤;고태환;권혁빈;이동호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.193-199
    • /
    • 2004
  • Numerical analysis of aerodynamic characteristics was differently performed according to the running situation of the Korean Tilting Train eXpress(TTX) that would be introduced for an improvement in efficiency of the used railroad track. Fluent 6.0 was used for the analysis of Non-tilting case, Tilting case and Passing-by case with the model of TTX. As a result, the aerodynamic drag had little difference between Tilting and Non-tilting case. However, pressure contour under the train of Tilting case was not symmetry because the gap between a train and the ground was different at both sides. In Passing-by case attraction and counterattraction occurred alternately and affected to the opposite train. When two trains were side by side, the maximum attraction was generated especially. Through an analysis of pressure wave in tunnel a large variation of pressure was generated by the bluff nose of TTX. The results in this study would be good data for the aerodynamic characteristic on TTX and provide important information to judgment of running safety.

Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers (난류경계층의 3차원 헤어핀 다발구조에 대한 실험적 연구)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.834-841
    • /
    • 2004
  • Experimental study on the three-dimensional topology of hairpin packet structures in turbulent boundary layers were carried out. Two different Reynolds number based on momentum thickness, Re$\sub$$\theta$/=514 and 934 were generated in a blowing type wind tunnel under the condition of zero pressure gradient. Simultaneous measurements of velocity fields at a wall-normal plane and wall-parallel plane by a plane PIV and a Stereo-PIV systems. The two Nd:Yag laser systems and three CCD cameras were synchronized to obtain instantaneous velocity fields at the same time. To avoid optical noise at the crossing line by the two laser light sheets, a new optical arrangement using polarization was applied. The obtained velocity fields show the existence of hairpin packet structure vividly and the idealized hairpin vortex signature is confirmed by experiment. Two counter-rotating vortex pair which reflects the cutting plane of hairpin legs are found both side of a strong streaky structure when the wall-normal plane cuts the hairpin head.

A long-term tunnel settlement prediction model based on BO-GPBE with SHM data

  • Yang Ding;Yu-Jun Wei;Pei-Sen Xi;Peng-Peng Ang;Zhen Han
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2024
  • The new metro crossing the existing metro will cause the settlement or floating of the existing structures, which will have safety problems for the operation of the existing metro and the construction of the new metro. Therefore, it is necessary to monitor and predict the settlement of the existing metro caused by the construction of the new metro in real time. Considering the complexity and uncertainty of metro settlement, a Gaussian Prior Bayesian Emulator (GPBE) probability prediction model based on Bayesian optimization (BO) is proposed, that is, BO-GPBE. Firstly, the settlement monitoring data are analyzed to get the influence of the new metro on the settlement of the existing metro. Then, five different acquisition functions, that is, expected improvement (EI), expected improvement per second (EIPS), expected improvement per second plus (EIPSP), lower confidence bound (LCB), probability of improvement (PI) are selected to construct BO model, and then BO-GPBE model is established. Finally, three years settlement monitoring data were collected by structural health monitoring (SHM) system installed on Nanjing Metro Line 10 are employed to demonstrate the effectiveness of BO-GPBE for forecasting the settlement.

A Study on the Impermeability of Ground using N.D.S and S.M.I methods (N.D.S공법과 S.M.I공법을 이용한 지반차수 방법에 관한 연구)

  • Kim, Ji-Hwan;Kim, Joon-Jeong;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. The design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, was suggested. Two injection methods namely, Natural Durable Stabilizer (N.D.S) and Space-Multi Injection Grouting (S.M.I) methods, were introduced as new approach methods which could be adapted to modify the riverbed ground. In order to evaluate the performance of the improved ground by the N.D.S and S.M.I method, a series of pilot tests including the field and laboratory permeability tests, were carried out in the river crossing tunnel construction sites. The results obtained from pilot test program, were also reviewed. The results, the grouting efficiency of the S.M.I method using the non-alkalimeter silica sol is better than that of N.D.S method using cement. In addition, it is anticipated that the current research results are contributed to develop the grouting design technology.

Influence of moisture content on main mechanical properties of expansive soil and deformation of non-equal-length double-row piles: A case study

  • Wei, Meng;Liao, Fengfan;Zhou, Kerui;Yan, Shichun;Liu, Jianguo;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • The mechanical properties of expansive soil are very unstable, highly sensitive to water, and thus easy to cause major engineering accidents. In this paper, the expansive soil foundation pit project of the East Huada Square in the eastern suburb of Chengdu was studied, the moisture content of the expansive soil was considered as an important factor that affecting the mechanics properties of expansive soil and the stability of the non-equal-length double-row piles in the foundation pit support. Three groups of direct shear tests were carried out and the quantitative relationships between the moisture content and shear strength τ, cohesion c, internal friction angle φ were obtained. The effect of cohesion and internal friction angle on the maximum displacement and the maximum bending moment of piles were analyzed by the finite element software MIDAS/GTS (Geotechnical and Tunnel Analysis System). Results show that the higher the moisture content, the smaller the matrix suction, and the smaller the shear strength; the cohesion and the internal friction angle are exponentially related to the moisture content, and both are negatively correlated. The maximum displacement and the maximum bending moment of the non-equal length double-row piles decrease with the increase of the cohesion and the internal friction angle. When the cohesion is greater than 33 kPa or the internal friction angle is greater than 25.5°, the maximum displacement and maximum bending moment of the piles are relatively small, however, once crossing the points (the corresponding moisture content value is 24.4%), the maximum displacement and the maximum bending moment will increase significantly. Therefore, in order to ensure the stability and safety of the foundation pit support structure of the East Huada Square, the moisture content of the expansive soil should not exceed 24.4%.