• Title/Summary/Keyword: Crossbeam

Search Result 32, Processing Time 0.024 seconds

Multiaxial fatigue behaviors of open-rib to crossbeam joints in orthotropic bridge structures

  • Yang, Haibo;Qian, Hongliang;Wang, Ping;Dong, Pingsha;Berto, Fillipo
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.843-853
    • /
    • 2022
  • The fatigue behavior of welded open rib-to crossbeam joints (ORCJ) in orthotropic bridge structures is investigated using a traction structural stress method. The fatigue behaviors of welded open rib-to crossbeam joints have been a subject of study for decades for ensuring operational safety and future design improvement. A mesh-insensitive combination of traction structural stresses in ORCJ was obtained considering the effect of in-plane shear stress and validated by fatigue test results. The proposed method is advantageous for predicting fatigue cracks that initiate from the crossbeam cutout and propagate along the crossbeam. The investigations carried out with the proposed approach reveal that the normal structural stress decreases with the propagation of fatigue cracks, while the ratio of shear stress to normal stress increases. The effect of shear structural stress is significant for the analysis of fatigue behavior of ORCJ in multiaxial stress states.

A Case Study on Designs of Base Module for Modular Road System (모듈러 도로시스템 적용을 위한 지지구조 모듈의 설계사례 연구)

  • Lee, Juhyung;Baek, Duhyun;Kim, Donggyou
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.47-54
    • /
    • 2013
  • This study is the basic research to develop the customized base module for modular road system. A case study was carried out on designs of base module for soft soil condition. Two types of base module was proposed; crossbeam module and crossbeam-pile module. Based on the case study, it was verified crossbeam-pile module is suitable for soft soil condition and the optimum dimension of crossbeam-pile module for modular road system constructed on soft soil was determined. For development of the optimal base modular for modular road system, it is needed in the future to build a data base about ground and roadbed of road construction sites and to classify and systemized base modules according to soil conditions through many case studies.

Stress Analysis of Bogie frame adopting rectangular tube shaped transom (사각 단면 형상 트랜섬을 적용한 대차프레임 구조해적)

  • 이광일
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.60-66
    • /
    • 1999
  • Generally, bogie frame for EMU consists of side frame, crossbeam and transom. Among the main frame structure which has been produced in our company, crossbeam and transom have been made of circular shaped tube. In this un, welding process between circular crossbeam and circular transom is complicated and takes much time. To improve this problem, new rectangular tube shaped transom is adopted. In this paper, the processes and results of finite element analysis are described, which was carried out to evaluate the strength of new bogie frame according to UIC, JIS, KS code. FEA results show that the new bogie frame has sufficient static and fatigue strength. Comparing the FEA results with load test results should follow and further study for evaluating the fatigue strength will be pursued in future.

  • PDF

A Study on the Roof Components of the Traditional Single-Room Square Type Pavilion (한칸형 전통 사각정자의 지붕부 연구)

  • Jeong, Da-In;Kim, Choong-Sik
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.56-64
    • /
    • 2021
  • Pavilion is an important landscape installation in the traditional landscaping and a representative facility that organizes space. To interpret and succeed the traditional landscape space, researches on the shape and structure of the traditional pavilion are also needed. However, researches on the style and structure of the traditional pavilion are difficult to be found. Accordingly this study aimed to identify the structural characteristics of roof part that occupied the largest portion in determining the shape of pavilion. Our research findings are as follows. As a result of analyzing 15 traditional Single-room square pavilions whose structure could be identified, it was found that the main building elements that distinguished the type of roof part in the Single-room square were crossbeam, ridge pole, and baluster. Depending on the presence of roofing members, pavilion was classified into five types: crossbeam, crossbeam+ridge pole, crossbeam+baluster, ridge pole, and baluster. In addition, as a result of analyzing the load and joint that worked on crossbeam based on the shape classification of roof part, it was found that in the traditional Single-room square pavilion, crossbeam was designed to play a balancing role between pillar and load. This study is significant in that it attempted to make a close interpretation of the shape of roof part in the pavilion and the role and function of building elements in terms of size, ratio, and load.

The Effect of Diaphragm inside Trough Rib on Fatigue Behavior of Trough Rib and Cross Beam Connections in Orthotropic Steel Decks (강바닥판 종리브와 횡리브 교차부의 피로거동에 대한 종리브내 다이아프램의 영향)

  • Choi, Dong Ho;Choi, Hang Yong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.239-250
    • /
    • 2000
  • This study investigates the mechanical behavior on trough rib to crossbeam joint in orthotropic steel plate decks, specially emphasizing on the effect of diaphragm inside trough rib on the fatigue behavior of slit by static and fatigue tests. In particular, the effects of diaphragm on in-plane stress and out-of-plane stress, stress concentration, propagation of fatigue cracks at the silt are studied. With the result of experiment and numerical analysis, we have estimated the fatigue strength using the nominal stress and hot-sport stress. The details with diaphragm have occurred about 50% stress reduction at trough rib part of trough rib to crossbeam joint than the detail without diaphragm, however, the lower parts of crossbeam have occurred much more stress. Initial crack size or slit have an considerable influence on the propagation of fatigue cracks due to V-notch. The fatigue strength category of the details without diaphragm has higher value than fatigue limit, whereas that of the details with diaphragm is estimated lower than fatigue limit.

  • PDF

A Study on the Creative Pattern Elements of Dancheong in Yeongnamnu Pavilion, Miryang (밀양 영남루 단청의 창의적 조형요소에 관한 연구)

  • Goo, Mi-Ju;Kwok, Dong-Hae;Lee, Ho-Yeol
    • Journal of architectural history
    • /
    • v.25 no.6
    • /
    • pp.81-88
    • /
    • 2016
  • The purpose of this study is to inquire original design and character of dancheong in Yeongnamnu P avilion which features unusual portraits of twisting dragons and four heavenly creatures. Its artistic value and originality can be found in the portraits of four heavenly creatures which are painted on the interior seonjayeon(fan shape rafter) and in the unique design of crossbeam meoricho(flower decorations on each side of pillars). Yeongnamnu's crossbeam meoricho is janggu-meoricho type(meoricho with hourglass figure) with full-shape lotus and half-shape flower decorations. And it can be said that, dragon portrait painted on the border of lotus and flower decorations in green and yellow is a very unique style of dancheong, for the reason that it has scarcely been used before and ever since. The portrait of four heavenly creatures painted on each corner of seonjayeon is also found to be unique in design, for the reason that the design has rarely been used throughout history, with only two exceptions in mural tombs of Goguryeo and folding screen in Injeongjeon Hall of Changdeokgung P alace. With its unique and authentic feature along with its rarity in number, the portrait of four heavenly creatures painted on Yeongnamnu can be considered as quite symbolic and important.

Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress

  • Yang, Haibo;Qian, Hongliang;Wang, Ping
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • In this study, the fatigue property of U rib-to-crossbeam connections in orthotropic steel bridge (OSB) crossbeams under heavy traffic vehicle load was investigated considering the effects of in-plane shear stress. The applicability of an improved structural stress (ISS) method was validated for the fatigue behavior analysis of nonwelded arc-shaped cutout regions in multiaxial stress states. Various types of fatigue testing specimens were compared for investigating the equivalent structural stress, fatigue crack initiation positions, and failure modes with the unified standards. Furthermore, the implications of OSB crossbeams and specified loading cases are discussed with respect to the improved method. The ISS method is proven to be applicable for analyzing the fatigue property of nonwelded arc-shaped cutout regions in OSB crossbeams. The used method is essential for gaining a reliable prediction of the most likely failure modes under a specific heavy traffic vehicle load. The evaluated results using the used method are proven to be accurate with a slighter standard deviation. We obtained the trend of equivalent structural stress in arc-shaped cutout regions and validated the crack initiation positions and propagation directions by comparing them with the fatigue testing results. The implications of crossbeam spans on fatigue property are less significant than the effects of crossbeams.

A Study on Mechanical Characteristics Analysamsarais of PA/GF Composite Materials for Cowl Cross Beam (카울크로스빔용 PA/GF복합재료의 기계적 특성 분석에 관한 연구)

  • Hwan-kuk Kim;Jong-vin Park;Ji-hoon Lee;Heon-kyu Jeong
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • This study is about a hybrid lightweight cowl crossbeam structure with high rigidity and ability to absorb collision energy to support the cockpit module, which is an automobile interior part, and to absorb energy during a collision. It is a manufacturing process in which composite material bracket parts are inserted and injected into existing steel bars. When considering the mounting condition of a vehicle, the optimization of the fastening condition of the two parts and the mechanical properties of the composite material is acting as an important factor. Therefore, this study is about a composite material having a volume content of Polyamide(PA) and Glass Fiber used as a composite material for a composite material-metal hybrid cowl crossbeam. As a result of analyzing the physical properties of the PA/GF composite material, experimental data were obtained that can further enhance tensile strength and flexural strength by using PA66 rather than PA6 used as a base material for the composite material. And based on this, it contributed to securing the advantage of lightening by using high-stiffness composite material by improving the high disadvantage of the weight of the cowl crossbeam material, which was made only of existing metal materials.

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

Seismic fragility of a typical bridge using extrapolated experimental damage limit states

  • Liu, Yang;Paolacci, Fabrizio;Lu, Da-Gang
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.599-611
    • /
    • 2017
  • This paper improves seismic fragility of a typical steel-concrete composite bridge with the deck-to-pier connection joint configuration at the concrete crossbeam (CCB). Based on the quasi-static test on a typical steel-concrete composite bridge model under the SEQBRI project, the damage states for both of the critical components, the CCB and the pier, are identified. The finite element model is developed, and calibrated using the experimental data to model the damage states of the CCB and the bridge pier as observed from the experiment of the test specimen. Then the component fragility curves for both of the CCB and the pier are derived and combined to develop the system fragility curves of the bridge. The uncertainty associated with the mean system fragility has been discussed and quantified. The study reveals that the CCB is more vulnerable than the pier for certain damage states and the typical steel-concrete composite bridge with CCB exhibits desirable seismic performance.