• Title/Summary/Keyword: Cross-sections

Search Result 1,453, Processing Time 0.029 seconds

Determination of an Inelastic Collision Cross Sections for C3F8 Molecule by Electron Swarm Method (전자군 방법에 의한 C3F8분자가스의 비탄성충돌단면적의 결정)

  • Jeon Byung-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.301-306
    • /
    • 2006
  • The electron drift velocity W and the product of the longitudinal diffusion coefficient and the gas number density $ND_{L}$ in the $0.525\;\%$ and $5.05\;\%$ $C_{3}F_8-Ar$ mixtures were measured by using the double shutter drift tube with variable drift distance over the E/N range from 0.03 to 100 Td and gas pressure range from 1 to 915 torr. And we determined the electron collision cross sections set for the $C_{3}F_8$ molecule by STEP 1 of electron swarm method using a multi-term Boltzmann equation analysis. Our special attention in the present study was focused upon the vibrational excitation and new excitations cross sections of the $C_{3}F_8$ molecule.

Expanding the classic moment-curvature relation by a new perspective onto its axial strain

  • Petschke, T.;Corres, H.;Ezeberry, J.I.;Perez, A.;Recupero, A.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.515-529
    • /
    • 2013
  • The moment-curvature relation for simple bending is a well-studied subject and the classical moment-curvature diagram is commonly found in literature. The influence of axial forces has generally been considered as compression onto symmetrically reinforced cross-sections, thus strain at the reference fiber never has been an issue. However, when dealing with integral structures, which are usually statically indeterminate in different degrees, these concepts are not sufficient. Their horizontal elements are often completely restrained, which, under imposed deformations, leads to moderate compressive or tensile axial forces. The authors propose to analyze conventional beam cross-sections with moment-curvature diagrams considering asymmetrically reinforced cross-sections under combined influence of bending and moderate axial force. In addition a new diagram is introduced that expands the common moment-curvature relation onto the strain variation at the reference fiber. A parametric study presented in this article reveals the significant influence of selected cross-section parameters.

Structural Analysis of Thin-Walled, Multi-Celled Composite Blades with Elliptic Cross-Sections (다중세포로 구성된 박벽 타원형 단면 복합재료 블레이드의 구조해석)

  • 박일주;정성남
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2004
  • In this study, a refined beam analysis model has been developed for multi-celled composite blades with elliptic cross-sections. Reissner's semi-complimentary energy functional is introduced to describe the beam theory and also to deal with the mixed-nature of the formulation. The wail of elliptic sections is discretized into finite number of elements along the contour line and Gauss integration is applied to obtain the section properties. For each cell of the section, a total of four continuity conditions are used to impose proper constraints for the section. The theory is applied to single- and double-celled composite blades with elliptic cross-sections and is validated with detailed finite element analysis results.

Incremental Cross Sections for CANDU-PHWR Core Analysis (CANDU-PHWR의 증분단면적 계산방법에 대한 연구)

  • Hang Bok Choi;Seong Yun Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.98-104
    • /
    • 1985
  • A number of reactivity devices are distributed in a CANDU-PHWR core to control the power distribution and excess reactivity. The effects of these devices are represented by incremental cross sections in core analysis. The incremental cross sections are generated by the SUPERCELL code using the two-group constant set calculated by the lattice code, WIMS. The incremental cross sections are then assessed for adjusters and zone controller by core simulation. Reactivity worth and channel powers are compared to the reference values. The deviation of reactivity worth and the maximum channel power are less than 0.97% and 0.6%, respectively, for the initial and equilibrium core.

  • PDF

A Case Study on 3-D Modeling of the Orebody by using the 3D Modeler ('3D Modeler'를 사용한 광체의 3차원 모델링 사례연구)

  • Lee, Doo-Sung;Kim, Hyoun-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.93-98
    • /
    • 2002
  • A three dimensional model for the orebody of an operating mine in Korea was constructed by using a program called '3-D Modeler'. The program allows the user to interactively construct a 3-D model of an orebody from its horizontal cross-sections. The 3-D Modeler is easily able to combine and display various spatial data for model construction. The result of modeling is strongly influenced by control points that correlate to the adjacent horizontal cross-sections. The control points are determined by comparing the geometrical shape of the adjacent cross-sections in conjunction with the geological features of the orebody. The resulting model can be evaluated in viewing the constructed object in three dimensional space or more closely evaluated by inspecting the cross-section. The model can iteratively be improved by modifying the shape of the cross-section and by using this new cross-section for the model building.

Compressive strength prediction of CFRP confined concrete using data mining techniques

  • Camoes, Aires;Martins, Francisco F.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • During the last two decades, CFRP have been extensively used for repair and rehabilitation of existing structures as well as in new construction applications. For rehabilitation purposes CFRP are currently used to increase the load and the energy absorption capacities and also the shear strength of concrete columns. Thus, the effect of CFRP confinement on the strength and deformation capacity of concrete columns has been extensively studied. However, the majority of such studies consider empirical relationships based on correlation analysis due to the fact that until today there is no general law describing such a hugely complex phenomenon. Moreover, these studies have been focused on the performance of circular cross section columns and the data available for square or rectangular cross sections are still scarce. Therefore, the existing relationships may not be sufficiently accurate to provide satisfactory results. That is why intelligent models with the ability to learn from examples can and must be tested, trying to evaluate their accuracy for composite compressive strength prediction. In this study the forecasting of wrapped CFRP confined concrete strength was carried out using different Data Mining techniques to predict CFRP confined concrete compressive strength taking into account the specimens' cross section: circular or rectangular. Based on the results obtained, CFRP confined concrete compressive strength can be accurately predicted for circular cross sections using SVM with five and six input parameters without spending too much time. The results for rectangular sections were not as good as those obtained for circular sections. It seems that the prediction can only be obtained with reasonable accuracy for certain values of the lateral confinement coefficient due to less efficiency of lateral confinement for rectangular cross sections.

Validation of the neutron lead transport for fusion applications

  • Schulc, Martin;Kostal, Michal;Novak, Evzen;Czakoj, Tomas;Simon, Jan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.959-964
    • /
    • 2022
  • Lead is an important material, both for fusion or fission reactors. The cross sections of natural lead should be validated because lead is a main component of lithium-lead modules suggested for fusion power plants and it directly affects the crucial variable, tritium breeding ratio. The presented study discusses a validation of the lead transport libraries by dint of the activation of carefully selected activation samples. The high emission standard 252Cf neutron source was used as a neutron source for the presented validation experiment. In the irradiation setup, the samples were placed behind 5 and 10 cm of the lead material. Samples were measured using a gamma spectrometry to infer the reaction rate and compared with MCNP6 calculations using ENDF/B-VIII.0 lead cross sections. The experiment used validated IRDFF-II dosimetric reactions to validate lead cross sections, namely 197Au(n, 2n)196Au, 58Ni(n,p)58Co, 93Nb(n, 2n)92mNb, 115In(n,n')115mIn, 115In(n,γ)116mIn, 197Au(n,γ)198Au and 63Cu(n,γ)64Cu reactions. The threshold reactions agree reasonably with calculations; however, the experimental data suggests a higher thermal neutron flux behind lead bricks. The paper also suggests 252Cf isotropic source as a valuable tool for validation of some cross-sections important for fusion applications, i.e. reactions on structural materials, e.g. Cu, Pb, etc.

DEVELOPMENT OF CALCULATION METHOD OF SENSITIVITIES FOR LIGHT WATER REACTORS

  • Takeda, Toshikazu;Foad, Basma
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.753-758
    • /
    • 2013
  • A new method of calculating sensitivity coefficients of core characteristics relative to infinite-dilution cross sections has been developed. Conventional sensitivity coefficients are evaluated for the changes of effective cross sections which are dependent on individual models of core and cell. Therefore a correction has been derived to the conventional sensitivity coefficients based on the perturbation theory. The accuracy of the present method has been verified by comparing numerical results of sensitivity coefficients with a reference Monte-Carlo method.

Establishment of Equi-Distance River Cross Section and Finite Element Mesh Using ArcView and Observed Cross Section (ArcView와 실측단면을 이용한 등간격 하도단면 및 유한요소망 구축)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.95-112
    • /
    • 2009
  • The river cross section in the input/output data which are needed in the area of river flow analysis is very important factor. The bottom elevation of actual river cross section has to be correctly reflected to obtain correct results when two dimensional flow analysis is conducted for natural river. But to reflect virtually the bottom elevation of river cross section is impossible. The objective of this study is to suggest a method for creating equi-distance river cross section by using both HEC section and ArcView and constructing the finite element mesh. The main channels of Han and Nakdong river were selected and equi-distance river cross sections constructed in this study have shown good agreement with the observed river cross sections. In addition, high quality finite element meshes can be applied to many areas of study such as finite element analysis for water quality and two dimensional flow analysis using the suggested method for equi-distance river cross sections in this study.

  • PDF

The multigroup library processing method for coupled neutron and photon heating calculation of fast reactor

  • Teng Zhang;Xubo Ma;Kui Hu;GuanQun Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1204-1212
    • /
    • 2024
  • To accurately calculate the heating distribution of the fast reactor, a neutron-photon library in MATXS format named Knight-B7.1-1968n × 94γ was processed based on the ENDF/B-VII.1 library for ultrafine groups. The neutron cross-section processing code MGGC2.0 was used to generate few-group neutron cross sections in ISOTXS format. Additionally, the self-developed photon cross-section processing code NGAMMA was utilized to generate photon libraries for neutron-photon coupled heating calculations, including photo-atom cross sections for the ISOTXS format, prompt photon production cross sections, and kinetic energy release in materials (KERMA) factors for neutrons and photons, and the self-shielding effect from the capture and fission cross sections of neutron to photon have been taken into account when the photon source generated by neutron is calculated. The interface code GSORCAL was developed to generate the photon source distribution and interface with the DIF3D code to calculate the neutron-photon coupling heating distribution of the fast reactor core. The neutron-photon coupled heating calculation route was verified using the ZPPR-9 benchmark and the RBEC-M benchmark, and the results of the coupled heating calculations were analyzed in comparison with those obtained from the Monte Carlo code MCNP. The calculations show that the library was accurately processed, and the results of the fast reactor neutron-photon coupled heating calculations agree well with those obtained from MCNP.