• 제목/요약/키워드: Cross-member

검색결과 359건 처리시간 0.026초

고충돌에너지 흡수용 알루미늄 크래쉬박스 개발 (Development of Al Crash Box for High Crashworthiness Enhancement)

  • 유정수;김석봉;이문용;허훈
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.182-188
    • /
    • 2008
  • Crash box is one of the most important automotive parts for crash energy absorption and is equipped at the front end of the front side member. The specific characteristics of aluminum alloys offer the possibility to design cost-effective lightweight structures with high stiffness and excellent crash energy absorption potential. This study deals with crashworthiness of aluminum crash box for an auto-body with the various types of cross section. For aluminum alloys, A17003-T7 and A17003-T5, the dynamic tensile test was carried out to apply for crash analysis at the range of strain from 0.003/sec to 200/sec. The crash analysis and the crash test were carried out for three cross sections of rectangle, hexagon and octagon. The analysis results show that the octagon cross section shape with A17003-T5 has higher crashworthiness than other cross section shapes. The effect of rib shapes in the cross section is important factor in crash analysis. Finally, new configuration of crash box with high crash energy absorption was suggested.

I형 단면과 BOX형 단면을 갖는 프리캐스트 분절 PSC 거더의 실험적 연구 (An Experimental Study on the Precast Segmented PSC Girder with I-Shape and Box-Shape Cross-Section)

  • 김선희;이승후;박준석;천진욱;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.8-16
    • /
    • 2015
  • Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.

단면절삭형 응력제한 장치의 개발에 관한 연구 (A Study on the Development of Force Limiting Devices of Cross-Section Cutting Types)

  • 김철환;채원탁
    • 한국강구조학회 논문집
    • /
    • 제27권1호
    • /
    • pp.77-85
    • /
    • 2015
  • 본 연구에서는 세장한 부재가 압축력을 받을 경우 발생하는 횡좌굴에 의한 내력의 저하를 방지하기 위해, 좌굴 전에 항복을 유도하는 응력제한장치의 개발에 관한 것으로서, 기존의 면외저항방식 및 슬롯방식과는 상이한 단면절삭방식을 제안하고 그 유효성을 실험적, 해석적으로 규명하고 있다. 단면절삭방식은 단면의 절삭범위에 따라 역학적 특성 및 구조적 성능이 상이한 것으로서, 연구의 대상은 절삭의 폭 및 절삭개수를 주 대상으로 하고 있다. 연구결과, 단면 깊이가 같은 경우 단면 절삭폭의 영향은 나타나지 않았으며, 단면 절삭폭을 좁게, 절삭개수가 많을수록 소성영역에서 좀 더 안정적인 거동을 나타내었다. 따라서, 단면절삭을 이용한 응력제한 장치는 항복 후 안정된 이력거동을 나타내고 있어 응력제한 장치로서 그 유효성이 확인되었으며, 향후 실 구조물에의 적용이 가능하리라 판단된다.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

Practical second-order analysis and design of single angle trusses by an equivalent imperfection approach

  • Cho, S.H.;Chan, S.L.
    • Steel and Composite Structures
    • /
    • 제5권6호
    • /
    • pp.443-458
    • /
    • 2005
  • Steel angles are widely used in roof trusses as web and chord members and in lattice towers. Very often angle members are connected eccentrically. As a result, not only an angle member is under an axial force, but it is also subject to a pair of end eccentric moments. Moreover, the connection at each end provides some fixity so neither pinned nor the fixed end represents the reality. Many national design codes allow for the effects due to eccentricities by modifying the slenderness ratio and reducing the compressive strength of the member. However, in practice, it is difficult to determine accurately the effective length. The concept behind this method is inconsistent with strength design of members of other cross-sectional types such as I or box sections of which the buckling strength is controlled by the Perry constant or the initial imperfection parameters. This paper proposes a method for design of angle frames and trusses by the second-order analysis. The equivalent initial imperfection-to-length ratios for equal and unequal angles to compensate the negligence of initial curvatures, load eccentricities and residual stresses are determined in this paper. From the obtained results, the values of imperfection-to-length ratios are suggested for design and analysis of angle steel trusses allowing for member buckling strength based on the Perry-Robertson formula.

ANSYS를 이용한 실대재의 휨특성에 대한 연구 (A Study on the Bending Performance of Structural Size Lumbers Using the ANSYS)

  • 김광철
    • 한국가구학회지
    • /
    • 제22권4호
    • /
    • pp.323-329
    • /
    • 2011
  • In our country, domestic species can not be used as a structural member because we have not yet grading system. So, to utilize as a basic data of grading system, bending test and numerical modelling on structural member were conducted in this study. 35 of Douglas-fir, 2" ${\times}$ 6", span 2.4 m were tested for the bending properties, and Ansys software was used to analyze the numerical modelling on the structural members. The data of knots were inspected and applied in numerical modelling. To obtain the accuracy of analysis, nonlinear numerical analysis was carried out instead of linear numerical analysis. Ultimate load had a wide range from 4883N to 11,738 N, and maximum deformation also had a range from 26 mm to 68 mm. Average of ultimate load was 8,616 N, and that of maximum deformation was 48 mm. The distinctive features of failure types were simple tension type and cross-grain tension type. Ulitmate load and maximum deformation from numerical modelling were 7,504 N and 37 mm. The numerical modelling drawn by this study is available to all species, and reasonable prediction on the bending performance is possible with only some material properties.

  • PDF

The Impact of Trade Facilitation on China's Cross-border E-Commerce Exports: A Focus on the Trade Facilitation Index in RCEP Member Countries

  • Li Cai;Jie Cheng;Wen-Xia Wang
    • Journal of Korea Trade
    • /
    • 제26권7호
    • /
    • pp.109-126
    • /
    • 2022
  • Purpose - Based on the relevant panel data for China and 13 of the RCEP countries from 2008-2019, this paper conducts an in-depth study on the impact of trade facilitation levels on China's cross-border e-commerce exports using the expanded trade gravity model. Design/methodology - This study constructs a trade facilitation index (TFI) system, and uses the principal component analysis method to measure the trade facilitation levels of RCEP countries in 2008-2019. This result is then introduced into the extended gravity model to explore the effect of trade facilitation in RCEP countries on China's cross-border e-commerce export. Findings - It is found that the overall trade facilitation level has a significant effect on China's cross-border e-commerce exports. Among the primary indicators, with the exception of infrastructure, the other four indicators demonstrate a significant impact. The findings show that China should strengthen its cooperation with RCEP countries in trade facilitation and cross-border e-commerce to better achieve complementary regional economic development. Originality/value - This paper has three contributions: first, this paper builds a TFI system that includes five primary indicators based on the characteristics of cross-border e-commerce. Second, we explore the impact of trade facilitation levels of RCEP countries on China's cross-border e-commerce exports, which helps to fill the gap in existing studies of the impact of cross-border e-commerce exports. Third, this paper further analyzes the impact of five primary indicators on cross-border e-commerce exports; this thus provides more targeted measures to improve trade facilitation levels.

심층신경망 기반 회전익 블레이드의 단면 구조 강성 예측 모델 (Cross-Sectional Structural Stiffness Prediction Model for Rotor Blade Based on Deep Neural Network)

  • 강병주;천성우;조해성;기영중;김태성
    • 항공우주시스템공학회지
    • /
    • 제18권1호
    • /
    • pp.21-28
    • /
    • 2024
  • 본 논문에서는 회전익 블레이드의 단면 구조 정보를 통해 블레이드의 단면 강성을 예측하고, 재료 정보를 이용하여 단면 강성을 예측할 수 있는 심층 신경망 기반 네트워크 예측 모델의 설계 및 적절성 검토를 수행하였다. 재료 정보를 네트워크 입력으로 갖는 예측 모델의 경우, 블레이드 단면 부재 재료의 탄성 계수를 네트워크의 입력으로 고려하여 단면 강성을 예측하도록 설계하였다. 또한, 단면 구조 정보를 네트워크 입력으로 갖는 예측 모델의 경우, 블레이드의 단면을 구성하는 단면 부재의 위치와 두께 정보를 네트워크 입력으로 고려하여 단면 강성을 예측하도록 설계하였다. 각 예측 모델은 심층신경망 구조를 기반으로 설계하였으며, 단면 해석 프로그램인 KSAC2D를 통한 단면 해석 결과를 네트워크의 훈련 및 검증 데이터로 사용하였다.

하이드로포밍을 이용한 후륜 현가장치 최적설계 (The Optimization of Rear Suspension Using Hydroforming)

  • 오진호;최한호;박성호
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.481-485
    • /
    • 2008
  • The subframe type rear suspension consisting of a side member and a front/rear cross member is widely used in a medium car and full car. In the small car case, the beam of tubular type without independent suspension system is used to reduce manufacturing cost. In this study, a subframe type rear suspension by hydroforming has been developed. In designing suspension, a driving stability and durability should be considered as an important factor for the performance improvement, respectively. Thus, we focus on increasing the stiffness of suspension and decreasing the maximum stress affecting a durability cycle life. Several optimization design techniques such as shape, size, and topology optimization are implemented to meet these requirements. The shapes of rear suspension obtained from optimization are formed by using hydroforming process. Through commercial software based on the finite element, the superiority of this design method is demonstrated.

Reliability analysis of uncertain structures using earthquake response spectra

  • Moustafa, Abbas;Mahadevan, Sankaran
    • Earthquakes and Structures
    • /
    • 제2권3호
    • /
    • pp.279-295
    • /
    • 2011
  • This paper develops a probabilistic methodology for the seismic reliability analysis of structures with random properties. The earthquake loading is assumed to be described in terms of response spectra. The proposed methodology takes advantage of the response spectra and thus does not require explicit dynamic analysis of the actual structure. Uncertainties in the structural properties (e.g. member cross-sections, modulus of elasticity, member strengths, mass and damping) as well as in the seismic load (due to uncertainty associated with the earthquake load specification) are considered. The structural reliability is estimated by determining the failure probability or the reliability index associated with a performance function that defines safe and unsafe domains. The structural failure is estimated using a performance function that evaluates whether the maximum displacement has been exceeded. Numerical illustrations of reliability analysis of elastic and elastic-plastic single-story frame structures are presented first. The extension of the proposed method to elastic multi-degree-of-freedom uncertain structures is also studied and a solved example is provided.