• Title/Summary/Keyword: Cross-layer approach

Search Result 90, Processing Time 0.027 seconds

Improving TCP Performance over Cognitive Radio Networks using Cross-Layer Approach (크로스레이어 기법을 통한 인지무선 환경에서 TCP 성능 개선)

  • Byun, Sang-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.319-321
    • /
    • 2015
  • 인지무선네트워크 (Cognitive Radio Networks) 환경에서 스펙트럼의 원소유주인 1차사용자가 전송을 개시하는 경우, 같은 채널을 사용하는 2차사용자의 TCP (Transmission Control Protocol) 는 전송 불능 상태가 되어 심각한 성능저하가 발생한다. 이러한 성능저하는 1차사용자의 등장으로 인해 채널이 사용 불가능 해지는 상태를 패킷 손실로 판단하여 재전송 타임아웃이 발생하기 때문에 발생된다. 우리는 이 문제를 링크 또는 물리 계층 (하위계층) 과 TCP간의 크로스레이어링을 통하여 해결하고자 한다. 하위 계층은 1차사용자의 전송이 감지되면, 이를 TCP에게 시그널링하고, TCP는 이를 통해 재전송 타이머와 혼잡 윈도우를 고정시키고, 패킷 전송을 중단하도록 한다. 또, 하위계층이 가용 채널을 감지하게 되면, 재차 TCP에게 시그널링을 함으로써, 전송이 신속하게 재개되도록 한다. 제안하는 방법은 실제 USRP(Universal Software Radio Peripheral)에 구현하여 성능의 향상을 검증한다.

The Ethics of Artificial Intelligence and Robotization in Tourism and Hospitality - A Conceptual Framework and Research Agenda

  • Ivanov, Stanislav;Umbrello, Steven
    • Journal of Smart Tourism
    • /
    • v.1 no.4
    • /
    • pp.9-18
    • /
    • 2021
  • The impacts that AI and robotics systems can and will have on our everyday lives are already making themselves manifest. However, there is a lack of research on the ethical impacts and means for amelioration regarding AI and robotics within tourism and hospitality. Given the importance of designing technologies that cross national boundaries, and given that the tourism and hospitality industry is fundamentally predicated on multicultural interactions, this is an area of research and application that requires particular attention. Specifically, tourism and hospitality have a range of context-unique stakeholders that need to be accounted for in the salient design of AI systems is to be achieved. This paper adopts a stakeholder approach to develop the conceptual framework to centralize human values in designing and deploying AI and robotics systems in tourism and hospitality. The conceptual framework includes several layers - 'Human-human-AI' interaction level, direct and indirect stakeholders, and the macroenvironment. The ethical issues on each layer are outlined as well as some possible solutions to them. Additionally, the paper develops a research agenda on the topic.

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Predicting restraining effects in CFS channels: A machine learning approach

  • Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.441-456
    • /
    • 2024
  • This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.

Divergence-free algorithms for moment-thrust-curvature analysis of arbitrary sections

  • Chen, Liang;Liu, Si-Wei;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.557-569
    • /
    • 2017
  • Moment-thrust-curvatures ($M-P-{\Phi}$ curves) are fundamental quantities for detailed descriptions of basic properties such as stiffness and strength of a section under axial loads required for accurate computation of the deformations of reinforced concrete or composite columns. Currently, the finite-element-based methods adopting small fibers for analyzing a section are commonly used for generating the $M-P-{\Phi}$ curves and they require large amounts of computational time and effort. Further, the conventional numerical procedure using the force-control method might encounter divergence problems under high compression or tension. Therefore, this paper proposes a divergence-free approach, combining the use of the displacement-control and the Quasi-Newton scheme in the incremental-iterative procedure, for generating the $M-P-{\Phi}$ curves of arbitrary sections. An efficient method for computing the strength from concrete components is employed, where the stress integration is executed by layer-based algorithms. For easy modeling of residual stress, cross sections of structural steel components are meshed into fibers for strength resultants. The numerical procedure is elaborated in detail with flowcharts. Finally, extensive validating examples from previously published research are given for verifying the accuracy of the proposed method.

Computational Study of Fouling Deposits Due to Surface-Coated Particles in Coal-Fired Power Utility Boilers (표면 코팅 입자에 의한 석탄화력 발전용 보일러 파울링 수치적 연구)

  • Lee, Byeong-Eun;Yu, Gap-Jong;Sin, Se-Hyeon;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.474-481
    • /
    • 2002
  • Fouling deposits due to surface-coated particles have been calculated using CFD techniques. The sticking probabilities of the surface-coated particles are also evaluated on the basis of an energy balance. The sticking probabilities of the deposit surface are also included in the prediction of the deposition occurring through the multiple impaction of particles with the deposit surface. The sticking probability of an impacting particle is expressed in terms of such parameters as particle viscosity, surface tension, impact velocity, impact angle and the thickness of the sticky layer on a particle. Particulate behavior around a tube in cross flow was studied using the Lagrangian approach. Three important parameters i.e. impact velocity, impact angle, and particulate concentration, were used in the prediction of deposition rate. The computational predictions were found to be in good agreement with the experimental data.

Study on The Throughput Unfairness of High-power transmission in The Transmission Power Controlled Wireless Networks Considering Green Computing (그린 컴퓨팅을 위한 무선 네트워크 전송 파워 조절에서 고출력 전송의 성능 불공평성에 대한 연구)

  • Lee, Hee-Jin;Kim, Jong-Kwon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.27-35
    • /
    • 2010
  • In wireless packet networks, energy and wireless resource efficiency is critical issue to addressed for wide deployment. To achieve the both goals of saving the mobile station's energy and increasing the wireless capacity, transmission power control is introduced to wireless packet networks. In the transmission power controled networks, it is not deeply studied on unfairness among transmissions with different power levels that reaches starvation. Through the performance analysis, this paper explains the throughput unfairness of high power transmission with the unfair media access probability owing to the contending node number difference and proposes a simple PHY-MAC cross layer approach.

A MAC Protocol for Link Maintenance in Multichannel Cognitive Radio Ad Hoc Networks

  • Li, Jingye;Luo, Tao;Gao, Jing;Yue, Guangxin
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.172-183
    • /
    • 2015
  • To provide an efficient link maintenance approach, we propose a cross layer medium access control (LM-MAC) protocol for multichannel cognitive radio ad hoc networks. Link establishment and reliable transmission are two key problems for a perfect link maintenance mechanism. Since the cognitive user (CU) pairs have to reestablish their links each frame, in the proposed MAC protocol, three different access modes are designed to guarantee transmission efficiency in continuous frames. To enhance the transmission reliability, each CU will create a father spectrum list (FSL) after joining in the network. FSL is divided into three groups of sub-channels with different functions to compensate the packet loss caused by the primary users' appearance and the deep fading. Meanwhile, since the transmitter and the receiver will share the same FSL, periodical cooperative sensing is adopted to further optimize the former problem. Finally, compared with the existing opportunistic multichannel (OMC)-MAC protocol, the proposed LM-MAC protocol achieves better system performance in terms of saturation throughput, continuity and access delay.

Facial Age Estimation Using Convolutional Neural Networks Based on Inception Modules (인셉션 모듈 기반 컨볼루션 신경망을 이용한 얼굴 연령 예측)

  • Sukh-Erdene, Bolortuya;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1224-1231
    • /
    • 2018
  • Automatic age estimation has been used in many social network applications, practical commercial applications, and human-computer interaction visual-surveillance biometrics. However, it has rarely been explored. In this paper, we propose an automatic age estimation system, which includes face detection and convolutional deep learning based on an inception module. The latter is a 22-layer-deep network that serves as the particular category of the inception design. To evaluate the proposed approach, we use 4,000 images of eight different age groups from the Adience age dataset. k-fold cross-validation (k = 5) is applied. A comparison of the performance of the proposed work and recent related methods is presented. The results show that the proposed method significantly outperforms existing methods in terms of the exact accuracy and off-by-one accuracy. The off-by-one accuracy is when the result is off by one adjacent age label to the above or below. For the exact accuracy, the age label of "60+" is classified with the highest accuracy of 76%.

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.