• Title/Summary/Keyword: Cross-hole

Search Result 269, Processing Time 0.03 seconds

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.289-296
    • /
    • 2004
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to case without fins. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins.

  • PDF

A Study on the Gating System and Simulation for Gravity Casting of ZnDC1 Worm Gear (아연 합금 웜기어의 중력 주조 공정을 위한 주조 방안 설계 및 해석에 관한 연구)

  • Lee, Un-Gil;Kim, Jae-Hyun;Jin, Chul-Kyu;Chun, Hyeon-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.589-596
    • /
    • 2021
  • In this study, the optimum gating system was designed, and the two zinc alloy worm gears were manufactured in single process by applying a symmetrical gating system with 2 runners. The SRG ratio is set to 1 : 0.9 : 0.6, and the cross-sectional shapes such as sprue, runner and gate are designed. In order to determine whether the design of the gating system is appropriate, casting analysis was carried out. It takes 4.380 s to charge the casting 100%, 0.55 to 0.6 m/s at the gates and solidification begins after the casting is fully charged. The amount of air entrapment is 2% in the left gear and 6% in the right gear. Hot spots occurred in the center hole of the gear, and pores were found to occur around the upper part of the hole. Therefore, the design of the casting method is suitable for worm gears. CT analysis showed that all parts of worm gear were distributed with fine pores and some coarse pores were distributed around the central hole of worm gear. The yield strength and tensile strength were 220 MPa, 285 MPa, and the elongation rate was 8%. Vickers hardness is 82 HV.

Determining the Orientations of Broadband Stations in South Korea using Ambient Noise Cross-correlation (배경잡음 교차상관을 이용한 국내 광대역 지진계의 방위각 보정값 측정)

  • Lee, Sang-Jun;Rhie, Junkee
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Orientation corrections for Korean seismic stations were calculated by using ambient noise cross-correlation. This method uses Rayleigh waves extracted from ambient noise cross-correlation instead of teleseismic waveforms from earthquakes, which have been generally used for previous studies. The theoretical background of the method is that the phase of radial-vertical cross-correlation function should be the same as that of $90^{\circ}$ phase-shifted vertical-vertical cross-correlation function. The results calculated from stacked cross-correlograms from Jan. 2007 to Sep. 2008 are comparable to the previous results obtained from teleseismic waveforms. In addition, overall the standard deviations of orientation corrections are less than $5^{\circ}$. The temporal variation in orientation corrections calculated for every 30 days shows no significant change and also standard deviations of them are mostly less than $5^{\circ}$. This means that the orientations of stations used in this study have been kept constant during the period. The sensitivity test for stacking period of the ambient noise cross-correlation method shows that continuous ambient noise record of at least about 30 days is required for estimating reliable orientation corrections.

An optimum design study of interlacing nozzle by using Computational Fluid Dynamics

  • Juraeva Makhsuda;Ryu Kyung-Jin;Kim Sang-Dug;Song Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.395-397
    • /
    • 2006
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. The effect of various interlacing nozzle geometries on the interlacing process was studied. The geometries of interlacing nozzles with single or multiple air inlets located across the width of yarn channels are investigated. The basis case is the yarn channel, with a perpendicular main air inlet in the middle. Other cases have main air inlets, slightly inclined double sub air inlets, The yarn channel cross sectional shapes are either semicircular or rectangular shapes. The compressed impinging jet from the main air inlet hole hits the opposing bottom wall of the yarn channel, is divided into two branches, joins with the compressed air coming out from sub air inlet at the bottom and creates two free jets at both ends of the yarn channel. The compressed air movement in the cross-section consists of two opposing directional vortices. The CFD-FASTRAN flow parallel solver was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this pater.

  • PDF

Prediction of Air Pocket Pressure in Draw Die during Stamping Process (드로우 금형의 에어포켓 수축에 따르는 내부공기 압력예측에 대한 연구)

  • Koo, Tae-Kyong;Hwang, Se-Joon;Park, Warn-Gyu;Oh, Se-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.10-18
    • /
    • 2008
  • Metal stamping is widely used in the mass-production process of the automobile industry. During the stamping process, air may be trapped between the draw die and the panel. The high pressure of trapped air induces imperfections on the panel surface and creates a situation where an extremely high tonnage of punch is required. To prevent these problems, many air ventilation holes are drilled through the draw die and the punch. The present work has developed a simplified mathematical formulation for computing the pressure of the air pocket based on the ideal gas law and isentropic relation. The pressure of the air pocket was compared to the results by the commercial CFD code, Fluent, and experiments. The present work also used the Bisection method to calculate the optimum cross-sectional area of the air ventilation holes, which did not make the pressure of the air pocket exceed the prescribed maximum value.

An Ultrathin Polymer Network through Polyion-Complex by Using Sodium Dioctadecyl Sulfate as Monolayer Template

  • Lee, Burm-Jong;Kim, Hee-Sang;Kim, Seong-Hoon;Son, Eun-Mi;Kim, Dong-Kyoo;Shin, Hoon-Kyu;Kwon, Young-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.575-579
    • /
    • 2002
  • Two-dimensionally cross-linked ultrathin films of poly(maleic acid-alt-methyl vinyl ether) (MA-MVE) and poly(allylamine) (PAA) were produced by using sodium dioctadecyl sulfate (2C18S) as the monolayer template for Langmuir-Blodgett (LB) depositio n. The template molecules were subsequently removed by thermal treatment followed by extraction. The polyion-complexed monolayers of three components, i.e., template 2C18S, co-spread PAA, and subphase MA-MVE, were formed at the air-water interface. Their monolayer properties were studied by the surface pressure-area isotherm. The monolayers were transferred on solid substrates as Y type. The polyion-complexed LB films and the resulting network films were characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The cross-linking to form a polymer network was achieved by amide or imide formation through heat treatment under a vacuum. SEM observation of the film on a porous fluorocarbon membrane filter (pore diameter 0.1 ㎛) showed covering of the pores by four layers in the polyion complex state. Extraction by chloroform followed by heat treatment produced hole defects in the film.

Methods to Measure the Critical Dimension of the Bottoms of Through-Silicon Vias Using White-Light Scanning Interferometry

  • Hyun, Changhong;Kim, Seongryong;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.531-537
    • /
    • 2014
  • Through-silicon vias (TSVs) are fine, deep holes fabricated for connecting vertically stacked wafers during three-dimensional packaging of semiconductors. Measurement of the TSV geometry is very important because TSVs that are not manufactured as designed can cause many problems, and measuring the critical dimension (CD) of TSVs becomes more and more important, along with depth measurement. Applying white-light scanning interferometry to TSV measurement, especially the bottom CD measurement, is difficult due to the attenuation of light around the edge of the bottom of the hole when using a low numerical aperture. In this paper we propose and demonstrate four bottom CD measurement methods for TSVs: the cross section method, profile analysis method, tomographic image analysis method, and the two-dimensional Gaussian fitting method. To verify and demonstrate these methods, a practical TSV sample with a high aspect ratio of 11.2 is prepared and tested. The results from the proposed measurement methods using white-light scanning interferometry are compared to results from scanning electron microscope (SEM) measurements. The accuracy is highest for the cross section method, with an error of 3.5%, while a relative repeatability of 3.2% is achieved by the two-dimensional Gaussian fitting method.

Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade (곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구)

  • Yun, Won-Nam;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

The development of a thermal neutron dosimetry using a semiconductor (반도체형 열중성자 선량 측정센서 개발)

  • Lee, Nam-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.789-792
    • /
    • 2003
  • pMOSFET having 10 ${\mu}um$ thickness Gd layer has been tested to be used as a slow neutron sensor. The total thermal neutron cross section for the Gd is 47,000 barns and the cross section value drops rapidly with increasing neutron energy. When slow neutrons are incident to the Gd layer, the conversion electrons are emitted by the neutron absorption process. The conversion electrons generate electron-hole pairs in the $SiO_2$ layer of the pMOSFET. The holes are easily trapped in Oxide and act as positive charge centers in the $SiO_2$ layer. Due to the induced positive charges, the threshold turn-on voltage of the pMOSFET is changed. We have found that the voltage change is proportional to the accumulated slow neutron dose, therefore the pMOSFET having a Gd nuclear reaction layer can be used for a slow neutron dosimeter. The Gd-pMOSFET were tested at HANARO neutron beam port and $^{60}CO$ irradiation facility to investigate slow neutron response and gamma response respectively. Also the pMOSFET without Gd layer were tested at same conditions to compare the characteristics to the Gd-pMOSFET. From the result, we have concluded that the Gd-pMOSFET is very sensitive to the slow neutron and can be used as a slow neutron dosimeter. It can also be used in a mixed radiation field by subtracting the voltage change value of a pMOSFET without Gd from the value of the Gd-pMOSFET.

  • PDF

An Efficient Shape-Feature Computing Method from Boundary Sequences of Arbitrary Shapes (임의 형상의 윤곽선 시퀀스 정보로부터 형상 특징의 효율적인 연산 방법)

  • 김성옥;김동규;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.3
    • /
    • pp.255-262
    • /
    • 2002
  • A boundary sequence can be a good representation of arbitrary shapes, because it can represent them simply and precisely. However, boundary sequences have not been used as a representation of arbitrary shapes, because the pixel-based shape-features such as area, centroid, orientation, projection and so forth, could not be computed directly from them. In this paper, we show that the shape-features can be easily computed from the boundary sequences by introducing the cross-sections that are defined as vertical (or horizontal) line segments in a shape. A cross-section generation method is proposed, which generates cross-sections of the shape efficiently by tracing the boundary sequence of the shape once. Furthermore, a boundary sequence extraction method is also proposed, which generates a boundary sequence for each shape in a binary image automatically The proposed methods work well even if a shape has holes. Eventually, we show that a boundary sequence can be used effectively for representing arbitrary shapes.

  • PDF