• Title/Summary/Keyword: Cross-field pit

Search Result 15, Processing Time 0.021 seconds

Design and Fabrication of BSCCO-2223 Field Coils for Superconducting Synchronous Rotating Machine (초전도 동기기용 BSCCO-2223 계자코일의 설계 및 제작)

  • 백승규;장현만;손명환;권영길;류강식;조영식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.104-107
    • /
    • 2001
  • Racetrack coils are used in many areas of superconductivity applications such as generators, motors, maglev, wiggler magnets and so on. Especially now a days a few advanced nations including U.S., Japan are developing high temperature superconducting(HTS) wire which has better performance than low temperature superconducting(LTS) wire. Most of HTS wires such as BSCCO-2223 are manufactured with PIT(Power In Tube) process, so the shape of the wire looks like tape different from LTS wire with round cross-sectional appearance like normal conductors. Generally HTS racetrack coils are composed of a few partial double-pancake colis and then the double-pancakes are jointed each other according to their applications.

  • PDF

Anatomical Characteristics of Korean Red Pine (Pinus densiflora S. et Z.) Wood Degraded by a Brown-rot Fungus (Lentinus lepideus) (갈색부후균(Lentinus lepideus)에 의해 부후된 소나무 재(Pinus densiflora S. et Z.)의 해부학적 특성)

  • Kwon, Mi;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.39-50
    • /
    • 1993
  • The purpose of this study was to describe the micromorphological changes in Korean red pine (Pinus densiflora S. et Z.) wood decayed by a major brown-rot fungus, Lentinus lepideus, using scanning electron microscope and transmission electron microscope. At the end of the 12-week exposure to the fungus in soil block procedure(ASTM 1971), test blocks sustained 5.02% weight loss. The formation of bore hole by hyphae and penetration of hyphae through bordered pit were not observed. Instead, fungal hyphae appeared to penetrate axially tracheid luminar from the the ray cells via cross field pits. Hyphae were mainly found in lignin rich cell corner regions of tracheids, and also extensive degradation of tracheid wall occurred in this region. Extensive degradation of $S_2$ layer occurred without noticeable alteration of the $S_3$ layer, but warty layer and compound middle lamella remained relatively intact. Localized erosion, the characteristic of white rot, was observed in some cell wall and wall components including lignin were found to be decomposed.

  • PDF

Stress-transfer in concrete encased and filled tube square columns employed in top-down construction

  • Kim, Sun-Hee;Yom, Kyong-Soo;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.63-77
    • /
    • 2016
  • Top-down construction is a construction technique in which pit excavation and structure construction are conducted simultaneously. Reducing construction time and minimizing noise and vibration which affect neighboring structures, the technique is widely employed in constructing downtown structures. While H-steel columns have been commonly used as core columns, concrete filled steel tube (CFT) columns are at the center of attention because the latter have less axial directionality and greater cross-sectional efficiency than the former. When compared with circular CFT columns, square CFT columns are more easily connected to the floor structure and the area of percussion rotary drilling (PRD) is smaller. For this reason, square CFT columns are used as core columns of concrete encased and filled square (CET) columns in underground floors. However, studies on the structural behavior and concrete stress transfer of CET columns have not been conducted. Since concrete is cast according to construction sequence, checking the stress of concrete inside the core columns and the stress of covering concrete is essential. This paper presents the results of structural tests and analyses conducted to evaluate the usability and safety of CET columns in top-down construction where CFT columns are used as core columns. Parameters in the tests are loading condition, concrete strength and covering depth. The compressive load capacity and failure behavior of specimens are evaluated. In addition, 2 cases of field application of CET columns in underground floors are analyzed.

Scanning Electron Microscopic Studies on the Features of Compression Wood, Opposite Wood, and Side Wood in Branch of Pitch Pine(Pinus rigida Miller) (리기다소나무 (Pinus rigida Miller) 지재(枝材)의 압축이상재(壓縮異常材), 대응재(對應材) 및 측면재(側面材) 특성(特性)에 관한 주사전자현미경적(走査電子顯微鏡的)인 연구(硏究))

  • Eom, Young-Geun;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.3-18
    • /
    • 1985
  • In Korea, a study on the anatomical features of pitch pine (pinus rigida Miller) branch wood through photo-microscopical method was reported in 1972 by Lee. Therefore, as a further study of Lee's on the anatomical features in branch wood of pinus rigida miller that grows in Korea, compression wood, opposite wood, and side wood were selected and treated for the purpose of comparing their structures revealed on cross and radial surface through scanning electron microscope in this study. The obtained results in this study were summarized as follows; 1. The trachied transition from earlywood to late wood is very gradual and the tracheids are nearly regular in both arrangement and size in compression wood but this transition in opposite wood and side wood is abrupt and the tracheids in opposite wood and side wood are less regular than those in compression wood. Also, the annual ring width of opposite wood is narrower than that of compression wood or side wood and the rays revealed on cross surface of side wood are more distinct than compression wood and opposite wood rays. 2. The tracheids of compression wood show roundish trends especially in earlywood but those of opposite wood and side wood show some angular trends. And intercellular space, helical cavity, and spiral check are present in both earlywood and latewood of compression wood but not present in opposite wood and side wood irrespective of earlywood and latewood. 3. The wall thickness of latewood tracheid is similar to that of earlywood tracheid in compression wood whereas the wall thickness of latewood tracheid is by far thicker than that of earlywood tracheid in opposite wood and side wood and the S3 layer of secondary wall is lack in compression wood tracheid unlike opposite wood and side wood tracheid. 4. The tracheids in compression wood are often distorted at their tips unlike those in opposite wood and side wood and the bordered pit in compression wood tracheid is located at the bottom of helical groove unlike that in opposite wood and side wood tracheid. 5. The bordered pits in radial wall of opposite wood and side wood tracheids are oval in shape but those of compression wood tracheids show some modified oval shape. 6. In earlywood of side wood, the small apertures of cross-field pits are roundish triangle to rectangle and the large one are fenestriform through the coalition of two small ones. However, the small apertures of cross-field pits are upright oval and the large ones are procumbent oval shape in earlywood of opposite wood and the apertures of cross-field pits in compression wood are tilted bifacial convex lens shape in earlywood and slit in late wood because of the border on tracheid side.

  • PDF

Anatomical Comparison of Compression, Opposite, and Lateral Woods in a Branch of Pinus parviflora S. et Z. (섬잣나무(Pinus parviflora S. et Z.) 지재의 압축이상재, 측면재, 대응재에 관한 해부학적 특성 비교)

  • Xu, Guang Zhu;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.38-47
    • /
    • 2005
  • Compression, lateral, and opposite woods in a branch of Pinus parviflora S. et Z. were described and compared in the qualitative anatomical aspects through light and scanning electron microscopy. Tracheid transition from earlywood to latewood in the compression wood appeared to be relatively more gradual than in the opposite or lateral wood. Growth ring width and proportion of latewood were thought to be greater in the compression wood than in the lateral or opposite wood. The latewood tracheids of compression wood in transverse surface were mostly round, differently from those of lateral and opposite woods with square to angular shapes. Also, intercellular spaces, helical cavities and checks, and slit-like pit apertures were observed only in the compression wood tracheids. Cross-field pitting in the compression wood appeared not to be used as diagnostic guide because of their severe alteration from normal fenestriform or window-like type to cupressoid to taxodioid types. In tangential surface, fusiform rays in the compression wood were wider but lower than those in the lateral wood or opposite wood. In conclusion, compression wood was different from lateral and opposite woods but lateral and opposite woods were almost identical in qualitative anatomical features.