• 제목/요약/키워드: Cross-calibration

검색결과 214건 처리시간 0.025초

3D 프린팅을 이용한 한국인 골밀도 맞춤 팬텀 개발 (Developing Customized Phantom for Korean Bone Density Using 3D Printing)

  • 이준호;최관용;최재호
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권3호
    • /
    • pp.223-229
    • /
    • 2019
  • In order to reduce the radiation exposure dose of the patient and to obtain accurate diagnosis results, the quality control of the diagnostic radiation generator must be conducted periodically In particular, bone density test equipment could be influenced by many factors, and it is far more important because inaccurate measurement would eventually affect the result value. However, the cross-correction phantom of DXA equipment is poorly penetrated due to lack of awareness of the industry and the high cost. Therefore, this study developed a BMD phantom using a 3D printer and Korean BMD phantom with low cost by cross analyzing Korean BMD value from The Korean National Health and Nutrition Examination Survey and evaluated it. The L1, L2, and L3 BMD values of phantoms produced with the 3D printer were measured to be $0.887{\pm}0.006g/cm^2$, $0.927{\pm}0.006g/cm^2$, and $0.960{\pm}0.005g/cm^2$, at 215 mm height and $0.882{\pm}0.011g/cm^2$, $0.914{\pm}0.005g/cm^2$, $0.933{\pm}0.008g/cm^2$ at 155 mm height displaying statistically significant relevance. The result suggests that a proper quality control and cross calibration of DXA device be possible and expected to be an essential data for various medical phantom manufacture development using 3D printer.

CASI 초분광 영상을 이용한 RapidEye 위성영상의 대리복사보정 (Vicarious Radiometric Calibration of RapidEye Satellite Image Using CASI Hyperspectral Data)

  • 장안진;최재완;송아람;김예지;정진하
    • 대한공간정보학회지
    • /
    • 제23권3호
    • /
    • pp.3-10
    • /
    • 2015
  • 지상의 모든 물체는 고유의 분광 반사율을 갖고 있으며, 이러한 특성을 이용하여 지상 물체의 분류와 목표물 탐지 등이 가능하다. 정확한 분석을 위해서는 취득된 원격탐사 자료를 분광 반사율로 변환해야 한다. 이를 위한 절대복사보정 기법으로는 자료 제공 기관에서 명시한 변환 수식을 이용하는 방법, 지상에서 측정한 분광 반사율만으로 단순 경험적 회귀 분석을 이용하는 방법, ATCOR/FLAASH 같은 수학적 모델을 이용하는 방법 등이 있다. 본 연구에서는 CASI 초분광 영상의 분광 반사율 자료를 이용하여 RapidEye 위성영상의 대리복사보정을 수행하고, 그 결과를 다른 복사보정 기법 결과 및 지상 자료와 비교하였다. 실험 결과 제안 기법이 ATCOR 및 New Kurucz 2005 기법보다 높은 유사성을 보였으며, 일반적으로 활용되는 ELM 기법과 유사한 결과를 도출하였다.

근적외선분광법을 이용한 수입건초의 Ca과 P 함량 예측 (Predicting Calcium and Phosphorus Concentrations in Imported Hay by near Infrared Reflectance Spectroscopy)

  • 이배훈;김지혜;오미래;이기원;박형수
    • 한국초지조사료학회지
    • /
    • 제41권1호
    • /
    • pp.29-34
    • /
    • 2021
  • 본 연구는 근적외선분광법을 활용한 조사료의 Ca과 P 함량의 분석 가능성을 검토하고 예측 정확성이 높은 검량식을 개발하기 위하여 전국 건초 수입상, TMR 회사와 축산 농가에서 수집한 수입 화본과와 두과 목건초 392점 중에서 무작위로 126점을 선택하여 검량식 개발에 이용하였다. 선택된 시료는 시료측정 전처리 방법을 생시료 처리와 건조분쇄 처리구로 나누어 근적외선 스펙트라를 측정하고 근적외선 파장대역을 가시영역, 근적외선, 전파장영역으로 구분하여 검량식을 개발하여 예측 정확성을 평가하였다. 수입건초의 Ca과 P 함량에 대한 예측 정확성은 시료 전처리 방법과 파장대역별에 따라 다양하게 나타났으며, 시료전처리 방법은 건조하여 분쇄하는 방법과 파장대역별로는 근적외선 파장(1,100~2,500 nm)대역에서 예측 정확성이 높게 나타났다. 수입건초의 Ca 함량 예측 정확성은 근적외선 파장대역에서 건조분쇄 측정이 SEC 292.3 mg/kg(R2=0.99)와 SECV 468.6 mg/kg(R2=0.98)로 가장 정확한 예측능력을 나타냈다. 수입건초의 P 함량은 근적외선 파장대역에서 건조분쇄 측정이 SEC 204.4 mg/kg(R2=0.91)과 SECV 224.7 mg/kg(R2=0.89)로 가장 정확한 예측능력을 나타냈다. 이상의 결과를 종합해보면 근적외선분광법을 이용하여 조사료의 주요 광물질인 Ca과 P 함량을 신속하고 정확하게 분석이 가능하였으며, 시료 측정시 건조하여 분쇄하는 전처리 방법과 근적외선 파장대역에서 검량식을 개발하는 것이 예측 정확성이 가장 우수한 것으로 나타났다.

근적외선분광(NIRS)을 이용한 참깨의 lignan 함량 비파괴 분석 방법 확립 (Establishment of a Nondestructive Analysis Method for Lignan Content in Sesame using Near Infrared Reflectance Spectroscopy)

  • 이정은;김성업;이명희;김정인;오은영;김상우;김민영;박재은;조광수;오기원
    • 한국작물학회지
    • /
    • 제67권1호
    • /
    • pp.61-66
    • /
    • 2022
  • 본 연구는 참깨에 함유된 세사민 및 세사몰린의 함량을 비파괴적으로 신속하게 평가하기 위하여 NIRS 분석을 이용해 검량식을 작성하고 검량식의 적용가능성을 검증하였다. 검량식 작성에 사용된 482점 참깨의 HPLC 분석 결과를 NIRS 스펙트럼에 적용시킨 후 검량식을 작성하였다. 세사민 및 세사몰린의 R2 값은 각각 0.936, 0.875로 조사되었으며 이를 cross validation 한 결과에서도 각각 0.899, 0.781로 조사되어 리그난 함량 분석에 적용 가능할 것으로 판단되었다. 작성된 검량식의 적용가능성을 확인하기 위해 2020년에 생산된 참깨 유전자원 90종의 종자를 NIRS를 통해 분석한 결과 세사민 및 세사몰린의 R2값이 각각 0.653, 0.596으로 크게 낮아졌으나 리그난 함량이 높은 상위 30%의 자원을 선발하는데 무리가 없었다. 따라서 본 연구에서 작성된 NIRS 검량식은 육종 초기에 고리그난 함량을 선발하는데 적용 가능할 것으로 판단된다.

Calibration of Portable Particulate Mattere-Monitoring Device using Web Query and Machine Learning

  • Loh, Byoung Gook;Choi, Gi Heung
    • Safety and Health at Work
    • /
    • 제10권4호
    • /
    • pp.452-460
    • /
    • 2019
  • Background: Monitoring and control of PM2.5 are being recognized as key to address health issues attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Accuracy of light scatteringe-based PM2.5 monitors significantly depends on the method of calibration. Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy. Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5 sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of reference measurement data available at government-authorized PM monitoring station (GAMS) in the republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold cross-validation, and a linear regression model was used as a reference. Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5 concentrations data available from the GAMS through web query was effective. The extreme gradient boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78 and standard error of 5.0 ㎍/㎥, corresponding to 8% increase in R2 and 12% decrease in root mean square error in comparison with the linear regression model. Minimum 100 hours of calibration period was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a limitation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD participating in the sensor network increases, however, calibrated PMDs can be used as reference devices to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol. Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network using MQTT protocol and web query of reference measurement data available at a GAMS, significantly improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD possible.

Nondestructive Prediction of Fatty Acid Composition in Sesame Seeds by Near Infrared Reflectance Spectroscopy

  • Kim, Kwan-Su;Park, Si-Hyung;Choung, Myoung-Gun;Kim, Sun-Lim
    • 한국작물학회지
    • /
    • 제51권spc1호
    • /
    • pp.304-309
    • /
    • 2006
  • Near infrared reflectance spectroscopy (NIRS) was used to develop a rapid and nondestructive method for the determination of fatty acid composition in sesame (Sesamum indicum L.) seed oil. A total of ninety-three samples of intact seeds were scanned in the reflectance mode of a scanning monochromator, and reference values for fatty acid composition were measured by gas-liquid chromatography. Calibration equations were developed using modified partial least square regression with internal cross validation (n=63). The equations obtained had low standard errors of cross-validation and moderate $R^2$ (coefficient of determination in calibration). Prediction of an external validation set (n=30) showed significant correlation between reference values and NIRS estimated values based on the SEP (standard error of prediction), $r^2$ (coefficient of determination in prediction) and the ratio of standard deviation (SD) of reference data to SEP. The models developed in this study had relatively higher values (more than 2.0) of SD/SEP(C) for oleic and linoleic acid, having good correlation between reference and NIRS estimate. The results indicated that NIRS, a nondestructive screening method could be used to rapidly determine fatty acid composition in sesame seeds in the breeding programs for high quality sesame oil.

해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용 (Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation)

  • 김미영;최장운;이현;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

3차원 Volume PIV의 개발 (Development of 3-D Volume PIV)

  • 최장운;남구만;이영호;김미영
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.726-735
    • /
    • 2003
  • A Process of 3-D Particle image velocimetry, called here, as '3-D volume PIV' was developed for the full-field measurement of 3-D complex flows. The present method includes the coordinate transformation from image to camera, calibration of camera by a calibrator based on the collinear equation, stereo matching of particles by the approximation of the epipolar lines, accurate calculation of 3-D particle positions, identification of velocity vectors by 3-D cross-correlation equation, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis 3-D flow field, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An Experimental system was also used for the application of the proposed method. Three analog CCD camera and a Halogen lamp illumination were adopted to capture the wake flow behind a bluff obstacle. Among 200 effective particle s in two consecutive frames, 170 vectors were obtained averagely in the present study.

연속파 Nd:YAG 레이저를 이용한 치아교정 급속 구개확장장치 용접특성 (Welding Characteristics of Rapid Palatal Expander for Teeth Calibration using a Continuous Wave Nd:YAG Laser)

  • 유영태;양윤석;신호준
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.40-49
    • /
    • 2010
  • The Purpose of this paper is to weld a rapid palatal expander using a continuous wave Nd:YAG laser. The rapid palatal expander has become a useful treatment method for severe maxillary transverse deficiencies and posterior crossbites. Rapid maxillary expansion is a well-established method to correct transverse maxillary deficiency and arch length discrepancy. The major process parameters studied in the present laser welding experiment were the positions of focus, laser power and travel speed of laser beam. We measured the fusion zone size and its shape using an optical microscope for the observation of cross-sectional area and tension stress of a rapid palatal expander welded. Through the experimental investigation, the optimum speeds and power of laser without deficiencies of weld cross-sectional area were obtained.

Simultaneous Spectrometric Determination of Caffeic Acid, Gallic Acid, and Quercetin in Some Aromatic Herbs, Using Chemometric Tools

  • Kachbi, Abdelmalek;Abdelfettah-Kara, Dalila;Benamor, Mohamed;Senhadji-Kebiche, Ounissa
    • 대한화학회지
    • /
    • 제65권4호
    • /
    • pp.254-259
    • /
    • 2021
  • The purpose of this work is the development of a method for an effective, less expensive, rapid, and simultaneous determination of three phenolic compounds (caffeic acid, gallic acid, and quercetin) widely present in food resources and known for their antioxidant powers. The method relies on partial least squares (PLS) calibration of UV-visible spectroscopic data. This model was applied to simultaneously determine, the concentrations of caffeic acid (CA), gallic acid (GA), and quercetin (Q) in six herb infusion extracts: basil, chive, laurel, mint, parsley, and thyme. A wavelength range (250-400) nm, and an experimental calibration matrix with 21 samples of ternary mixtures composed of CA (6.0-21.0 mg/L), GA (10.0-35.2 mg/L), and Q (6.4-17.5 mg/L) were chosen. Spectroscopic data were mean-centered before calibration. Two latent variables were determined using the contiguous block cross-validation procedure after calculating the root mean square error cross-validation RMSECV. Other statistic parameters: RMSEP, R2, and Recovery (%) were used to determine the predictive ability of the model. The results obtained demonstrated that UV-visible spectrometry and PLS regression were successfully applied to simultaneously quantify the three phenolic compounds in synthetic ternary mixtures. Moreover, the concentrations of CA, GA and Q in herb infusion extracts were easily predicted and found to be 3.918-18.055, 9.014-23.825, and 9.040-13.350 mg/g of dry sample, respectively.