Browse > Article
http://dx.doi.org/10.5012/jkcs.2021.65.4.254

Simultaneous Spectrometric Determination of Caffeic Acid, Gallic Acid, and Quercetin in Some Aromatic Herbs, Using Chemometric Tools  

Kachbi, Abdelmalek (Laboratoire des Procedes Membranaires et des Techniques de Separation et de Recuperation, Faculty of Technology, Universite de Bejaia)
Abdelfettah-Kara, Dalila (Laboratoire des Procedes Membranaires et des Techniques de Separation et de Recuperation, Faculty of Technology, Universite de Bejaia)
Benamor, Mohamed (Laboratoire des Procedes Membranaires et des Techniques de Separation et de Recuperation, Faculty of Technology, Universite de Bejaia)
Senhadji-Kebiche, Ounissa (Laboratoire des Procedes Membranaires et des Techniques de Separation et de Recuperation, Faculty of Technology, Universite de Bejaia)
Publication Information
Abstract
The purpose of this work is the development of a method for an effective, less expensive, rapid, and simultaneous determination of three phenolic compounds (caffeic acid, gallic acid, and quercetin) widely present in food resources and known for their antioxidant powers. The method relies on partial least squares (PLS) calibration of UV-visible spectroscopic data. This model was applied to simultaneously determine, the concentrations of caffeic acid (CA), gallic acid (GA), and quercetin (Q) in six herb infusion extracts: basil, chive, laurel, mint, parsley, and thyme. A wavelength range (250-400) nm, and an experimental calibration matrix with 21 samples of ternary mixtures composed of CA (6.0-21.0 mg/L), GA (10.0-35.2 mg/L), and Q (6.4-17.5 mg/L) were chosen. Spectroscopic data were mean-centered before calibration. Two latent variables were determined using the contiguous block cross-validation procedure after calculating the root mean square error cross-validation RMSECV. Other statistic parameters: RMSEP, R2, and Recovery (%) were used to determine the predictive ability of the model. The results obtained demonstrated that UV-visible spectrometry and PLS regression were successfully applied to simultaneously quantify the three phenolic compounds in synthetic ternary mixtures. Moreover, the concentrations of CA, GA and Q in herb infusion extracts were easily predicted and found to be 3.918-18.055, 9.014-23.825, and 9.040-13.350 mg/g of dry sample, respectively.
Keywords
Simultaneous determination; Chemometrics; Phenolic compounds; UV-visible; Herbs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Belajova, E. J. Food Nutr. Res. 2012, 51, 117.
2 Marti, R.; Valcarcel, M.; Herrero-Martinez, J. M.; Cebolla-Cornejo, J.; Rosello, S. Food Chem. 2015, 169, 169.   DOI
3 Barbosa, S.; Campmajo, G.; Saurina, J.; Puignou, L.; Nunez, O. J. Agric. Food Chem. 2020, 68, 591.   DOI
4 Ivanovic, M.; Razborsek, M. I.; Kolar, M. Acta Chim. Slov. 2016, 63, 661.   DOI
5 Cornell, J. A., Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, 3rd ed.; John Wiley, and Sons: New York, U.S.A. 2002; Chapter 1, p. 1.
6 Amelin, V. G.; Andoralov, A. M. J. Anal. Chem. 2016, 71, 82.   DOI
7 Benkaci-Ali, F.; Baaliouamer, A.; Wathelet, J. P.; Marlier, M. Chem. Nat. Comp. 2012, 47, 925.   DOI
8 Shamuratov, B. A.; Mavlyanov, S. M.; Dalimov, D. N.; Allaniyazova, M. K. Chem. Nat. Comp. 2003, 39, 597.   DOI
9 Pedroza, M. A.; Carmona, M.; Pardo, F.; Salinas, M. R.; Zalacain, A. CyTA-J. Food 2012, 10, 225.   DOI
10 Boggia, R.; Casolino, M. C.; Hysenaj, V.; Oliveri, P.; Zunin, P. Food Chem. 2013, 140, 735.   DOI
11 Barros, L.; Duenas, M.; Pinela, J.; Carvalho, A. M.; Buelga, C. S. Plant Foods Hum. Nutr. 2012, 67, 229.   DOI
12 De Paepe, D.; Sarvaes, K.; Noten, B.; Diels, L.; De Loose, M. Food Chem. 2013, 136, 368.   DOI
13 Helmja, K.; Vaher, M.; Pussa, T.; Raudsepp, P.; Kaljurand, M. Electrophoresis 2008, 29, 3980.   DOI
14 Wang, Y.; Li, B.; Ni, Y.; Kokot, S. Anal. Methods 2013, 5, 6051.   DOI
15 Rebwar, O. H.; Hunar, Y. M.; Hijran, S. J. J. Iran. Chem. Soc. 2018, 15, 1603.   DOI
16 Abbasi-Tarighat, M.; Shahbazi, E.; Niknam, K. Food Chem. 2013, 138, 991.   DOI
17 Aguerssif, N.; Benamor, M.; Kachbi, A.; Draa, M. T., J. Trace Elem. Med. Biol. 2008, 22, 175.   DOI
18 De Carvalho, B. M. A.; De Carvalho, L. M.; Dos Reis Coimbra, J. S.; Minim, L. A.; De Souza Barcellos E. Food Chem. 2015, 174, 1.   DOI
19 Kachbi, A.; Benamor, M.; Aguerssif, N. Curr. Anal. Chem. 2010, 6, 88.   DOI
20 Kavsek, D.; Jeric,T.; Le Marechal, A.M.; Vajnhand, S.; Bednarova, A. Acta Chim. Slov. 2013, 60, 375.
21 Meloun, M.; Militky, J.; Hill, M.; Brereton, R. G. Analyst. 2002, 127, 433.   DOI
22 Korany, M. A.; Abdine, H. H.; Ragab, M. A. A.; Aboras, S. I. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2015, 143, 281.   DOI
23 Moghadam, M. R.; Shabani, A. M. H.; Dadfarnia, S. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2015, 135, 929.   DOI
24 Zolgharnein, J.; Asanjarani, N.; Azimi, G.; Ghasemi, J. J. Anal. Chem. 2015, 70, 148.   DOI
25 De Jong, S. Chemom. Intell. Lab. Syst. 1993, 18, 251.   DOI
26 Geladi, P.; Kowalski, B. R. Anal. Chim. Acta 1986, 185, 1.   DOI
27 Wise, B. M.; Gallagher, N. B.; Bro, R.; Shaver, J. M.; Windig, W. Eigenvector Research, Wenatchee 2006, 137.
28 Wold, S.; Sjostrom, M.; Eriksson, L. Chemom. Intell. Lab. Syst. 2001, 58, 109.   DOI
29 Ghasemi, J.; Shahabadi, N.; Seraji, H. R. Anal. Chim. Acta 2004, 510, 121.   DOI
30 Proestos, C.; Boziaris, I. S.; Nychas, G. J. E.; Komaitis, M. Food Chem. 2006, 95, 664.   DOI
31 Wang, H.; Provan, G. J.; Helliwell, K. Food Chem. 2004, 87, 307.   DOI
32 Divya, O.; Shinde, M. J. Appl. Spectrosc. 2013, 80, 326.   DOI
33 Bilyk, A.; Sapers, G. M. J. Agric. Food Chem. 1985, 33, 226.   DOI
34 Lugast, A.; Hovari, J. Acta Alim. 2000, 29, 345.   DOI
35 Justesen, U.; Knuthsen, P. Food Chem. 2001, 73, 245.   DOI
36 Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.; Chamalides, C.; Foufa, E. Food Chem. 2000, 70, 319.   DOI
37 Diaz-Garcia, M. C.; Obon, J. M.; Castellar, M. R.; Collado, J.; Alacid, M. Food Chem. 2013, 138, 938.   DOI
38 Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Food Chem. 2003, 51, 571.   DOI
39 Chanda, S.; Hazarika, A. K.; Choudhury, N.; Islam, S. A.; Manna, R.; Sabhapondit, S.; Tudu, B.; Bandyopadhyay, R. J. Chemom. 2019, 33, 1.   DOI