• Title/Summary/Keyword: Cross-Tension

Search Result 248, Processing Time 0.035 seconds

Analysis of Fully Developed Multilayer Flow in Microchannel with a Rectangular Cross Section (직사각형 단면을 갖는 미세채널에서 완전 발달된 다층유동에 관한 해석)

  • Kim, Jung-Kyung;Jung, Chan-Il;Jang, Jun-Keun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.644-654
    • /
    • 2003
  • An analytical solution for a vertically stratified viscous flow in a microchannel with a rectangular cross-section is constructed, assuming fully developed laminar flow where the interfaces between the fluid layers are flat. Although the solution is for n-layer flow, restricted results to symmetrical three-layer flow are presented to investigate the effects of the viscosity and thickness ratios of the fluid layers and the aspect ratio of the microchannel on the flow field. Relations between the flow rate and thickness ratios of the fluid layers with varying viscosity distributions are found, considering the cross -sectional velocity profiles which vary noticeably with the three parameters and differ significantly from the velocity profiles of the flow between infinite parallel plates. Interfacial instability induced by the viscosity stratification in the microchannel is discussed referring to previous studies on the instability analysis for plane multilayer flow. Exact solution derived in the present study can be used for examining a diffusion process and three -dimensional stability analysis. More works are needed to formulate the equations including the effects of interfacial' tension between immiscible liquids and surface wettability which are important in microscale transport phenomena.

Numerical Simulation of Three-Dimensional Motion of Droplets by Using Lattice Boltzmann Method

  • Alapati, Suresh;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.2-5
    • /
    • 2008
  • This study describes the numerical simulation of three-dimensional droplet formation and the following motion in a cross-junction microchannel by using the Lattice Boltzmann Method (LBM). Our aim is to develop the three-dimensional binary fluids model, consisting of two sets of distribution functions to represent the total fluid density and the density difference, which introduces the repulsive interaction consistent with a free-energy function between two fluids. We validated the LBM code with the velocity profile in a 3-dimensional rectangular channel. Then, we applied our code to the numerical simulation of a binary fluid flow in a cross-junction channel focusing on the investigation of the droplet formulation. Due to the pressure and interfacial-tension effect, one component of the fluids which is injected from one inlet is cut off into many droplets periodically by the other component which is injected from the other inlets. We considered the effect of the boundary conditions for density difference (order parameter) on the wetting of the droplet to the side walls.

  • PDF

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Fatigue behavior of concrete beams reinforced with HRBF500 steel bars

  • Li, Ke;Wang, Xin-Ling;Cao, Shuang-Yin;Chen, Qing-Ping
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • The purpose of this study was to investigate experimentally the fatigue performance of reinforced concrete (RC) beams with hot-rolled ribbed fine-grained steel bars of yielding strength 500MPa (HRBF500). Three rectangular and three T-section RC beams with HRBF500 bars were constructed and tested under static and constant-amplitude cyclic loading. Prior to the application of repeated loading, all beams were initially cracked under static loading. The major test variables were the steel ratio, cross-sectional shape and stress range. The stress evolution of HRBF500 bars, the information about crack growth and the deflection developments of test beams were presented and analyzed. Rapid increases in deflections and tension steel stress occured in the early stages of fatigue loading, and were followed by a relatively stable period. Test results indicate that, the concrete beams reinforced with appropriate amount of HRBF500 bars can survive 2.5 million cycles of constant-amplitude cyclic loading with no apparent signs of damage, on condition that the initial extreme tensile stress in HRBF500 steel bars was controlled less than 150 MPa. It was also found that, the initial extreme tension steel stress, stress range, and steel ratio were the main factors that affected the fatigue properties of RC beams with HRBF500 bars, whose effects on fatigue properties were fully discussed in this paper, while the cross-sectional shape had no significant influence in fatigue properties. The results provide important guidance for the fatigue design of concrete beams reinforced with HRBF500 steel bars.

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

Repair of flange damage steel-concrete composite girders using CFRP sheets

  • Wang, Lianguang;Hou, Wenyu;Han, Huafeng;Huo, Junhua
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.511-523
    • /
    • 2015
  • Damaged steel-concrete composite girders can be repaired and retrofitted by epoxy-bonded carbon fiber-reinforced polymer (CFRP) sheets to the critical areas of tension flanges. This paper presents the results of a study on the behavior of damaged steel-concrete composite girders repaired with CFRP sheets under static loading. A total of seven composite girders made of I20A steel sections and 80mm-thick by 900mm-wide concrete slabs were prepared and tested. CFRP sheets and prestressed CFRP sheets were used to repair the specimens. The specimens lost the cross-sectional area of their tension flanges with 30%, 50% and 100%. The results showed that CFRP sheets had no significant effect on the yield loads of strengthened composite girders, but had significant effect on the ultimate loads. The yield loads, elastic stiffness, and ultimate bearing capacities of strengthened composite girders had been changed as a result of prestressed CFRP sheets, the utilization ratio of CFRP sheets could be effectively improved by applying prestress to CFRP sheets. Both the yield loads and ultimate bearing capacities had been changed as a result of steel beam's flange damage level and CFRP sheets could cover the girders' shortage of bearing capacity with 30% and 50% flange damage, respectively.

Tension Stiffening of Reinforced Polymer Concrete Tension member (철근보강 폴리머 콘크리트 인장부재의 인장강성)

  • Yeon, Kyu-Seok;Jin, Nan-Ji;Jo, Kyu-Woo;Kweon, Taek-Jong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.387-390
    • /
    • 2003
  • Direct tensile tests were carried out for the tensile members of steel-reinforced polymer concrete with different steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, polymer concrete with $1000kgf/cm^2$ of compressive strength, steel with $5200kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel diameters and steel content, the strain energy exerted by concrete till the initial crack was 14-15% of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of steel-reinforced polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of steel-reinforced polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and design for the polymer concrete structural members.

  • PDF

Development of Measuring System of Membrane Stress for Membrane Structure (막구조물의 막장력 측정장치 개발에 관한 연구)

  • Jung, Hwan-Mok;Woo, Jae-Won;Cho, Byung-Wook;Lee, Seong-Yeun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.6
    • /
    • pp.67-74
    • /
    • 2008
  • This paper is concerned with the development of a measurement system using field measuring device which will give the membrane stress of the membrane structures. Up to this point, several techniques on measurement of membrane stresses has been proposed and some have been used in the fields, but accuracy of the measured stresses to be far from reliable one. Such situation has not been changed until recent days, we do not have the measurement device on which we can depend. On top of that, due to the different properties in cross directions for material of the membrane, the stress in the warp direction is different from that in the fill one.

  • PDF

A Case Study of Correlation between Inflows and Geological Structures around Underground Caverns (지하 유류저장 공동의 지질구조와 공동누수량 상호관계에 관한 사례)

  • 전한석
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2000
  • When caverns are excavated, it is very important to understand the distribution and charateristics of geological structures because the structures have an significant effect on grouting, rock reinforcement, and groundwater flow, etc. The main water bearing fractures have an orientation of N50~60W and these fractures are known as tension fractures. Their orientation coincides with a long elliptical axis ofpumping test, and they cross the tension fractures of N10~30E. They have typical fracture systems ofrhombic type in this area.

  • PDF

A Study on the Bending Performance of Structural Size Lumbers Using the ANSYS (ANSYS를 이용한 실대재의 휨특성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • In our country, domestic species can not be used as a structural member because we have not yet grading system. So, to utilize as a basic data of grading system, bending test and numerical modelling on structural member were conducted in this study. 35 of Douglas-fir, 2" ${\times}$ 6", span 2.4 m were tested for the bending properties, and Ansys software was used to analyze the numerical modelling on the structural members. The data of knots were inspected and applied in numerical modelling. To obtain the accuracy of analysis, nonlinear numerical analysis was carried out instead of linear numerical analysis. Ultimate load had a wide range from 4883N to 11,738 N, and maximum deformation also had a range from 26 mm to 68 mm. Average of ultimate load was 8,616 N, and that of maximum deformation was 48 mm. The distinctive features of failure types were simple tension type and cross-grain tension type. Ulitmate load and maximum deformation from numerical modelling were 7,504 N and 37 mm. The numerical modelling drawn by this study is available to all species, and reasonable prediction on the bending performance is possible with only some material properties.

  • PDF