• Title/Summary/Keyword: Cross tension strength

Search Result 71, Processing Time 0.031 seconds

Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints (셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가)

  • Kang, Se Hyung;Hwang, Jae Hyun;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

Fatigue Strength Evaluation of Mechanical Press Joints of Cold Rolled Steel Sheet under Cross-Tension Loading (냉간압연강 판재 기계적 접합부의 십자형 인장 하중하에서의 피로강도)

  • Kim, Jong-Bong;Kim, Taek-Young;Kang, Se-Hyung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, for the evaluation of the static and fatigue joining strength of the joint, the geometry of the cross-tension specimen was adopted. The specimens were produced with optimal joining force and fatigue life of the clinch joint specimens was evaluated. The material selected for use in this study was cold rolled mild steel (SPCC) with a thickness of 0.8 mm. The maximum tensile load was 708 N for the specimen with single point. The fatigue endurance limit (=42.6 N) per point approached to 6% of the maximum tensile strength at a load ratio of 0.1, suggesting that the joints are vulnerable to cross-tension loading during fatigue. Compared to equivalent stress and maximum principal stress, the SWT fatigue parameter and equivalent strain can properly predict the current experimental fatigue life. The SWT parameter can be expressed as $SWT=2497.5N^{-0.552)_f$.

Fatigue Strength Evaluation of SPCC Cross-Tension Spot Weld Joints (냉간 압연강판 십자형 점용접부의 피로강도 평가)

  • Kim, Ho-Kyung;Choi, Deok-Ho;Yang, Kyoung-Tak
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.17-21
    • /
    • 2006
  • In this study, SPCC cross-tension type specimens produced under various spot welding conditions were tensile and fatigue tested. Decrease of 2 kA in normal current condition of 10 kA caused a large amount of reduction in both static joining strength and fatigue life. And 2 kA increase resulted in increase of static joining strength and an increase in low cycle regime but a decrease in high cycle regime, revealing the fact that fatigue strength rather than static joining strength would be a major factor during design process in view of the body endurance. As a results of estimating the fatigue lifetimes of various types of spot weld specimens. equivalent stress intensity factor is the proper parameter for predicting the lifetimes of various types of specimens. which can be expressed as ${\Delta}K_{eq}(N/nm^{1.5})=11550N^{-0.36}_{f}$.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

Effects of Phosphorus and in-situ Post-heat Pulse Conditions on Resistance Spot Weldability of High Si DP980 Steel Sheet (고Si DP980강 스폿 용접 특성에 미치는 Phosphorus (P) 및 in-situ 후열처리 펄스 조건의 영향)

  • Choi, Du-Youl
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.21-26
    • /
    • 2015
  • Recently, application of UHSS(Ultra High Strength Steels) whose tensile strength is over 1000MPa to car body structure are growing due to great needs for light weighting and improved crash worthiness. However, their poor weldability is one of obstacles to expand selecting to car body. In this study, effect of Phosphorus contents on resistance spot weldability of high elongation DP980 steel whose Si content is over 1% was investigated. The cross tension strength (CTS) was decreased showing partial interface fracture as Phosphorus content increase because of solidification segregation of Phosphorus. In order to improve resistance spot weldability by modification of welding condition, in-situ post-weld heating pulse was introduced after main pulse. The optimum cooling time between main and post pulse and post-pulse current condtion were determined through FEM welding simulation and DOE tests. The CTS was increased about 1.5 time showing plug fracture. The decrease of Phosphorus segregation was found to be a major reason for weld ductility and CTS improvement.

Deformation-Based Shear Strength Model for Slender Reinforced Concrete Beams (세장한 철근콘크리트 보의 병형기초 전단강도 모델)

  • Choi Kyoung-Kyu;Park Hong-Gun;Wight James K
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.391-394
    • /
    • 2005
  • A theoretical model was developed to predict the shear strength of slender reinforced concrete beams. The shear force applied to a cross-section of the beam was assumed to be resisted primarily by the compressive zone of intact concrete rather than by the tensile zone. The shear capacity of the cross section was defined based on the material failure criteria of concrete: failure controlled by compression and failure controlled by tension. In the evaluation of the shear capacity, interaction with the normal stresses developed by the flexural moment in the cross section was considered. In the proposed strength model, the shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed strength model was verified by the comparisons to prior experimental results.

  • PDF

Limit Span/Depth Ratio for Indirect Deflection Control in Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 처짐 간접제어를 위한 한계 지간/깊이-비 연구)

  • Choi, Seung-Won;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.35-41
    • /
    • 2011
  • In concrete structural design provisons, two methods are normally provided to control deflection; direct method and indirect method. It is more efficient to use the indirect deflection control by which the span/depth ratio is limited not to exceed an allowable deflection limit. Because actual deflections are affected by many causes, it is complicated to evaluate actual deflections. In this study, limit span/depth ratios are derived from the deflection calculated directly at the serviceability limit state in RC members. The deflection is obtained from using average curvature, which depends on materials model used. The main variables examined are tension stiffening effect, concrete strength, cross section size and compressive steel ratio. It could be appeared that more analytical consistency is secured to use the 2nd order form of tension stiffening effect. And the limit span/depth ratio is dependent on material strength, tensile and compressive steel ratio but it is independent on cross-section size.

Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar

  • Rahdar, H.A.;Ghalehnovi, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • Since the concrete strength around the reinforcement rebar affects the tension stiffening, the tension stiffening effect of ultra high performance concrete on the concrete members reinforced by steel rebar is examined by testing the specimens with circular cross section with the length 850 mm reinforced by a steel rebar at the center of a specimen's cross section in this research. Conducting a tensile test on the specimens, the cracking behavior is evaluated and a curve with an exponential descending branch is obtained to explain the post-cracking zone. In addition, this paper proposes an equation for this branch and parameters of equation is obtained based on the ratio of cover thickness to rebar diameter (c/d) and reinforcement percentage (${\rho}$).

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.