• Title/Summary/Keyword: Cross sectional configuration

Search Result 79, Processing Time 0.029 seconds

A Study of the MC design application of modular construction Mainly on the MC design applying of discontinuous module grids (모듈러 건축의 MC 설계 적용에 관한 연구 불연속 모듈격자를 활용한 MC 설계를 중심으로)

  • Lee, Chang-Jae;Lim, Seok-Ho
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.121-128
    • /
    • 2013
  • This study attempted to explore the MC design methods of modular construction using discontinuous double module grids and further, the design methods of walls. Modular construction is generally characterized with multiple units called modules with a module dimension of 3M(300mm) appearing in the form of double grids. The discontinuous double grids including correction values and gap values occurs inevitably in the modular construction where units are joined horizontally. Therefore, it is desirable to carry out the MC design taking into account these discontinuous double grids. In this study, the MC design was applied to the plane of wooden houses in modular construction, going through a process of setting the size of pillars and inside dimensions, of determining the dimension of discontinuous double grids that occur during the assembly of units, and of setting the dimension of outer walls in conjunction with the derived dimensions. The dimension of outer walls was applied differently depending on the range of regional use by analyzing the energy performance with the materials used. Consequently, the materials and components of factory-produced buildings can be used directly without processing, and the suitability of the outer wall design can be pre-determined by previewing the calculation of the cross-sectional configuration and heat transmission coefficients of outer walls in modular construction, allowing to be used as a decision-making tool of design.

The Effect of Open Ratio of the Inlet Baffle on Hydraulic Behavior within a Rectangular Sedimentation Basin (장방형 침전지 유입 정류벽 유공비의 지내 수리거동에 미치는 영향 연구)

  • Park, No-Suk;Kim, Seong-Su;Lim, Sung-Eun;Lee, Doo-Jin;Seo, In-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.345-352
    • /
    • 2009
  • The purpose of inlet baffle is to distribute the flow uniformly over the entire cross-sectional area of the sedimentation basin. The goal when designing this baffle is to achieve some head loss while keeping the velocity gradients through the ports equal to the velocity gradient in the end of the flocculator, so as to not break up the flocs. Sedimentation tank performance is strongly influenced by hydrodynamic and physical effects such as inlet design. This study was conducted to evaluate the effect of open ratio of the inlet baffle on hydraulic behavior within a rectangular sedimentation basin using CFD simulation and ADV technique. In order to verify the CFD simulation, we measured the factual velocity at 18 points in the full-scale sedimentation basin at Y water treatment plant. Good agreement was obtained between the CFD predictions and the experimentally measured data. From the simulation results of the existing basin with 7.4 % open ratio, it was investigated that extreme decrease in velocity occurred in the middle of basin. Since then, flow features was unstable. The region which the velocity decrease rapidly moved forward to the flow direction in proportion to the increase of inflow velocity. Also, it was investigated that the flow characteristic of 6.0 % open ratio was significantly different from 7.4 % open ratio at the same configuration condition. These results are a clear indication that inflow momentum and open ratio are the parameters affecting the characteristics of hydraulic patterns. The influence of these parameters on the sedimentation performance requires further study.

Numerical Analysis on a Hydrogen Diaphragm Compressor with Various Oil Distribution Holes Pattern for Hydrogen Compressor (수소용 다이어프램 압축기의 오일 분배 홀 패턴에 따른 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Kim, Gyu-Bo;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • There are several types of compressors which are appropriate for hydrogen gas station. Diaphragm type of compressor is the one of them and it satisfies the requirements for that purpose in terms of maintaining gas purity and making high pressure over 700 bar. The objective of this study is to find an optimal design of oil distribution hole configuration. The number of holes is changed maintaining total cross-sectional area of holes. Five cases(1 hole, 4, 8,16 and 24 holes) were studied through Fluid Structure Interaction(FSI) analysis method. Gas and oil pressure, the deflection and stress of the diaphragm were analysed during compression and suction process respectively. There is no specific difference among the cases during compression. An additional deflection due to the existence of hole was found during suction for all case. But the highest deflection and stress were found in the 1 hole case. It was seen that 60% decrease of stress in magnitude in 24 hole case compare to the 1 hole case.

An Experiment on Flow Simulation Depending on Opening Configuration of Weir Using a Numerical Model (수치모형을 이용한 보의 개방구성에 따른 흐름모의 실험)

  • Kang, Tae Un;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.218-226
    • /
    • 2020
  • This study investigated that the numerical experiment for analysis on free overtopping flow by a weir of levee type, as the first stage of the development of a numerical technique for prediction methodology based on a numerical model. Using 2-dimensional flow models, Nays2DH, we conducted numerical simulations based on existing experimental data to compare and verify the models. We firstly discussed the numerical reproducibility for the discontinued flow by weir shape, and calibrated the computational flow through preprocessing of channel bed. Further, we carried out and compared the simulations for prediction on the overtopping flow by the number of weir gates. As a result of simulations, we found that the maximum flow velocity of downstream of weir increases when the number of weir gates increases under the same cross sectional area of flow. Through such results, this study could present basic data for hydraulic research to consider the water flow and sediment transport depending on weir operation in the future work.

Contemporary Koreans' Perceptions of Facial Beauty

  • Rhee, Seung Chul;An, Soo-Jung;Hwang, Rahil
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.390-399
    • /
    • 2017
  • Background This article aims to investigate current perceptions of beauty of the general public and physicians without a specialization in plastic surgery performing aesthetic procedures. Methods A cross-sectional and interviewing questionnaire was administered to 290 people in Seoul, South Korea in September 2015. The questionnaire addressed three issues: general attitudes about plastic surgery (Q1), perception of and preferences regarding Korean female celebrities' facial attractiveness (Q2), and the relative influence of each facial aesthetic subunit on overall facial attractiveness. The survey's results were gathered by a professional research agency and classified according to a respondent's gender, age, and job type ($95%{\pm}5.75%$ confidence interval). Statistical analysis was performed using SPSS ver. 10.1, calculating one-way analysis of variance with post hoc analysis and Tukey's t-test. Results Among the respondents, 38.3% were in favor of aesthetic plastic surgery. The most common source of plastic surgery information was the internet (50.0%). The most powerful factor influencing hospital or clinic selection was the postoperative surgical results of acquaintances (74.9%). We created a composite face of an attractive Korean female, representing the current facial configuration considered appealing to the Koreans. Beauty perceptions differed to some degree based on gender and generational differences. We found that there were certain differences in beauty perceptions between general physicians who perform aesthetic procedures and the general public. Conclusions Our study results provide aesthetic plastic surgeons with detailed information about contemporary Korean people's attitudes toward and perceptions of plastic surgery and the specific characteristics of female Korean faces currently considered attractive, plus trends in these perceptions, which should inform plastic surgeons within their specialized fields.

Influence of Coating Defect Ratio on Tribological Behavior Determined by Electrochemical Techniques (전기화학적 분석을 통해 산출된 코팅 결함율이 트라이볼로지적 특성에 미치는 영향 평가)

  • Lee Young-Ze;Kim Woo-Jung;Ahn Seung-Ho;Kim Ho-Gun;Kim Jung-Gu;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2004
  • Many of the current development in surface modification engineering are focused on multilayered coatings, which have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel in this study. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N,\;WC-Ti_{0.53}Al_{0.47}N,\;WC-Ti_{0.5}Al_{0.5}N\;and\;WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behaviors. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec and a normal load of 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball $(H_R\;=\;66) $ having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with energy-dispersive spectroscopy (EDS). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$coatings with increasing of Al (aluminum) concentration.

Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.463-479
    • /
    • 2007
  • A series of wind tunnel sectional model dynamic tests of a twin-deck bridge were conducted at the CLP Power Wind/Wave Tunnel Facility (WWTF) of The Hong Kong University of Science and Technology (HKUST) to investigate the effects of gap-width on the self-excited vibrations and the dynamic and aerodynamic characteristics of the bridge. Five 2.9 m long models with different gap-widths were fabricated and suspended in the wind tunnel to simulate a two-degrees-of-freedom (2DOF) bridge dynamic system, free to vibrate in both vertical and torsional directions. The mass, vertical frequency, and the torsional-to-vertical frequency ratio of the 2DOF systems were fixed to emphasize the effects of gap-width. A free-vibration test methodology was employed and the Eigensystem Realization Algorithm (ERA) was utilized to extract the eight flutter derivatives and the modal parameters from the coupled free-decay responses. The results of the zero gap-width configuration were in reasonable agreement with the theoretical values for an ideal thin flat plate in smooth flow and the published results of models with similar cross-sections, thus validating the experimental and analytical techniques utilized in this study. The methodology was further verified by the comparison between the measured and predicted free-decay responses. A comparison of results for different gap-widths revealed that variations of the gap-width mainly affect the torsional damping property, and that the configurations with greater gap-widths show a higher torsional damping ratio and hence stronger aerodynamic stability of the bridge.

Combustion Performance According to the Cavity Flameholder Location in a Supersonic Combustor (초음속 연소기에서 공동형 보염기 위치에 따른 연소 성능)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Lee, Sang-hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2020
  • The effect of the relative distance between two cavity flame holders on the performance of a supersonic combustor was experimentally investigated. A rectangular cross-sectional combustor model with one cavity flame holder on each of two facing walls was used, with two difference distances between cavities of 135 mm and 220 mm. The fuel equivalence ratio was varied as 0.16 and 0.38. A direct-connected type test facility was used to provide Mach 2 flow condition. The test results revealed that the combustion pressure was higher for the shorter cavity distance case. But fuel equivalence ratio did not have large effect on the combustion pressure. It was concluded that, to get higher combustor pressure, there needs to be further combustor configuration change such as smaller cavity distance or tandem cavity installation.

A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.266-272
    • /
    • 2021
  • Mooring systems are among the most important elements employed to control the motion of floating offshore structures on the sea. Considering the use of polymer material, a new method is proposed to address the creep characteristics rather than the method of using a tension load cell for measuring the tension of the mooring line. This study uses a synthetic mooring rope made from a polymer material, which usually consists of three parts: center, eye, and splice, and which makes a joint for two successive ropes. We integrate the optical sensor into the synthetic mooring ropes to measure the rope tension. The different structure of the mooring line in the longitudinal direction can be used to measure the loads with the entire mooring configuration in series, which can be defined as SMART (Smart Mooring and Riser Truncation) mooring. To determine the characteristics of the basic SMART mooring, a SMART mooring with a diameter of 3 mm made of three different polymer materials is observed to change the wavelength that responds as the length changes. By performing the longitudinal tension experiment using three different SMART moorings, it was confirmed that there were linear wavelength changes in the response characteristics of the 3-mm-diameter SMART moorings. A 54-mm-diameter SMART mooring is produced to measure the response of longitudinal tension on the center, eye, and splice of the mooring, and a longitudinal tension of 100 t in step-by-step applied for the Maintained Test and Fatigue Cycle Test is conducted. By performing a longitudinal tension experiment, wavelength changes were detected in the center, eye, and splice position of the SMART moorings. The results obtained from each part of the installed sensors indicated a different strain measurement depending on the position of the SMART moorings. The variation of the strain measurement with the position was more than twice the result of the difference measurement, while the applied external load increased step-by-step. It appears that there is a correlation with an externally generated longitudinal tensional force depending on the cross-sectional area of each part of the SMART mooring.

Posterior Lung Herniation in Pulmonary Agenesis and Aplasia: Chest Radiograph and Cross-Sectional Imaging Correlation

  • Ji Young Kim;Woo Sun Kim;Kyung Soo Lee;Bo-Kyung Je;Ji Eun Park;Young Jin Ryu;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1690-1696
    • /
    • 2021
  • Objective: To describe the anatomic locations and imaging features of posterior lung herniation in unilateral pulmonary agenesis and aplasia, focusing on radiograph-CT/MRI correlation. Materials and Methods: A total of 10 patients (seven with pulmonary agenesis and three with pulmonary aplasia, male: female = 1:9, mean age 7.3 years, age range from 1 month to 20 years) were included. Chest radiographs (n = 9), CT (n = 9), and MRI (n = 1) were reviewed to assess the type of lung underdevelopment, presence of anterior and posterior lung herniation, bronchus origin, supplying artery, and draining vein of the herniated lung. Results: Pulmonary agenesis/aplasia more commonly affected the left lung (n = 7) than the right lung (n = 3). Anterior lung herniation was observed in nine of the 10 patients. Posterior lung herniation was observed in seven patients with left pulmonary agenesis/aplasia. Two patients showed posterior lung herniation crossing the midline but not beyond the aorta, and five patients showed the posteriorly herniated right lower lobe crossing the midline to extend into the left hemithorax farther beyond the descending thoracic aorta through the space between the esophagus and the aorta. This anatomical configuration resulted in a characteristic radiographic finding of a radiolucent area with a convex lateral border and a vertical medial border in the left lower lung zone, revealing a tongue-like projection on CT and MRI. Conclusion: Posterior lung herniation occurs in unilateral left lung agenesis/aplasia. Approximately 70% of the cases of posterior lung herniation reveal a unique radiolucent tongue-like projection in the left lower lung zone on imaging studies, which is caused by the extension of the posteriorly herniated right lung farther beyond the descending aorta.