• Title/Summary/Keyword: Cross section analysis

Search Result 1,909, Processing Time 0.03 seconds

Analysis of Radar Cross Section of the Integrated Mast Module for Battleship (함정용 통합 마스트의 레이다 단면적 분석)

  • Shin, Hokeun;Lee, Seokgon;Park, Dongmin;Shin, Jinwoo;Chung, Myungsoo;Park, Sanghyun;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.584-587
    • /
    • 2017
  • In this paper, the radar cross section of the integrated mast module for battleship is analyzed. The computation program based on physical optics and physical theory of diffraction is developed and the computed results are compared with those of commercial simulator to check the accuracy of computations. The radar cross section is calculated in terms of the mast shape, incident angle, and polarization. The radar cross section can be reduced through the change of the mast slope and the chamfered mast, which can be applied to a mast with a low radar cross section.

A New Cross Section Design Concept for Better Efficiency in Two-Lane Highways (2차로도로 효율성 제고를 위한 횡단면 설계 방안)

  • Shim Kywan-Bho;Choi Jai-Sung
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.75-85
    • /
    • 2006
  • Currently, cross-section design can not reflect highway function and traffic volume, various construction. This research paper provides analysis of traffic accident type, improvement of traffic operation and safety, assessment for new cross-section standards of two-lane highway. Research show higher accident rate on 6$\sim$8.9m road than 9$\sim$12.9m road width in two-lane highway. Typical improvement is widening on lane and shoulder width. Simulation show large increase on 6$\sim$7m road delay-time in 1,200vph. In contrast 10$\sim$11.5m road shows slight change on delay-time. This research paper provides various cross-section construction by traffic volume in minor arterial and distributor two-lane highway. The new cross-section design provides adopting highway volume, various construction and flexibility.

  • PDF

A Study of the Applicability of Cross-Section Method for Cut-Slope Stability Analysis (개착사면의 안정성 해석을 위한 횡단면 기법의 활용성 고찰)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Lee, Guen-Ho;Cho, Kye-Seong;Lee, Sang-Bae
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • Stability of cut-slope, the orientation and dimension of which are gradually changed, has been analyzed by employing the cross-section method capable of comprehensibly considering the lithological, structural and mechanical characteristics of slope rock. Lithological fragility is investigated by inspecting the drilled core logs and BIPS image has been taken to delineate the rock structure. Engineering properties of drilled-core including the joint shear strength have been also measured. Potential failure modes of cut-slope and failure-induced joints are identified by performing the stereographic projection analysis. Traces of potential failure-induced joints are drawn on the cross-section which depicts the excavated geometry of cut-slope. Considering the distribution of potential plane failure-induced joint traces blocks of plane failure mode are hypothetically formed. The stabilities and required reinforcements of plane failure blocks located at the different excavation depth have been calculated to confirm the applicability of the cross-section method for the optimum cut-slope design.

Estimation of river water depth using UAV-assisted RGB imagery and multiple linear regression analysis (무인기 지원 RGB 영상과 다중선형회귀분석을 이용한 하천 수심 추정)

  • Moon, Hyeon-Tae;Lee, Jung-Hwan;Yuk, Ji-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1059-1070
    • /
    • 2020
  • River cross-section measurement data is one of the most important input data in research related to hydraulic and hydrological modeling, such as flow calculation and flood forecasting warning methods for river management. However, the acquisition of accurate and continuous cross-section data of rivers leading to irregular geometric structure has significant limitations in terms of time and cost. In this regard, a primary objective of this study is to develop a methodology that is able to measure the spatial distribution of continuous river characteristics by minimizing the input of time, cost, and manpower. Therefore, in this study, we tried to examine the possibility and accuracy of continuous cross-section estimation by estimating the water depth for each cross-section through multiple linear regression analysis using RGB-based aerial images and actual data. As a result of comparing with the actual data, it was confirmed that the depth can be accurately estimated within about 2 m of water depth, which can capture spatially heterogeneous relationships, and this is expected to contribute to accurate and continuous river cross-section acquisition.

Force-deformation behaviour modelling of cracked reinforced concrete by EXCEL spreadsheets

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.43-57
    • /
    • 2011
  • Force-deformation modelling of cracked reinforced concrete is essential for a displacement-based seismic assessment of structures and can be achieved by fibre-element analysis of the cross-section of the major lateral resisting elements. The non-linear moment curvature relationship obtained from fibre-element analysis takes into account the significant effects of axial pre-compression and contributions by the longitudinal reinforcement. Whilst some specialised analysis packages possess the capability of incorporating fibre-elements into the modelling (e.g., RESPONSE 2000), implementation of the analysis on EXCEL is illustrated in this paper. The outcome of the analysis is the moment-curvature relationship of the wall cross-section, curvature at yield and at damage control limit states specified by the user. Few software platforms can compete with EXCEL in terms of its transparencies, versatility and familiarity to the computer users. The program has the capability of handling arbitrary cross-sections that are without an axis of symmetry. Application of the program is illustrated with examples of typical cross-sections of structural walls. The calculated limiting curvature for the considered cross-sections were used to construct displacement profiles up the height of the wall for comparison with the seismically induced displacement demand.

Vibration Characteristic Analysis of a Duel-cooled Fuel Rod according to the Cross-sectional Dimensions and the Span Length (이중냉각 연료봉의 단면치수와 스팬길이에 따른 진동특성해석)

  • Lee, Kang-Hee;Kim, Jae-Yong;Lee, Yung-Ho;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.819-825
    • /
    • 2007
  • Vibration characteristics of an duel-cooling cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

Analysis of torsional-bending FGM beam by 3D Saint-Venant refined beam theory

  • Guendouz, Ilies;Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed;El Fatmi, Rached
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.423-435
    • /
    • 2022
  • In this article, we present torsion-bending analysis of a composite FGM beam with an open section, according to the advanced and refined theory of 1D / 3D beams based on the 3D Saint-Venant's solution and taking into account the edge effects. The (initially one-dimensional) model contains a set of three-dimensional (3D) displacement modes of the cross section, reflecting its 3D mechanical behaviour. The modes are taken into account depending on the mechanical characteristics and the geometrical form of the cross-section of the composite FGM beam. The model considered is implemented on the CSB (Cross-Section and Beam Analysis) software package. It is based on the RBT/SV theory (Refined Beam Theory on Saint-Venant principle) of FGM beams. The mechanical and physical characteristics of the FGM beam continuously vary, depending on a power-law distribution, across the thickness of the beam. We compare the numerical results obtained by the three-beam theories, namely: The Classical Beam Theory of Saint-Venant (Classical Beam Theory CBT), the theory of refined beams (Refined Beam Theory RBT), and the theory of refined beams, using the higher (high) modes of distortion of the cross-section (Refined Beam Theory using distorted modes RBTd). The results obtained confirm a clear difference between those obtained by the three models at the level of the supports. Further from the support, the results of RBT and RBTd are of the same order, whereas those of CBT remains far from those of higher-order theories. The 3D stresses, strains and displacements, obtained by the present study, reflect the 3D behaviour of FGM beams well, despite the initially 1D nature of the problem. A validation example also shows a very good agreement of the proposed models with other models (classical or higher-order beam theory) and Carrera Unified Formulation 1D-beam model with Lagrange Expansion functions (CUF-LE).

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord-Wise Asymmetric Cross-Section: II. Multi-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: II. 다중-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • Subsequently, Part I [1], which was about the single-cell model, a composite thin-walled beam with a multi-cell of chord-wise asymmetric cross-section, was selected in this study. Moreover, the theoretical dynamic characteristics of the model were analyzed. For this analysis, mathematical modeling was performed by considering the warping restraint effects, transverse shear effects, taper ratio and cross-section ratio. Similar to part I, the mass, stiffness coefficients and Eigen frequencies of the multi-cell section considered were investigated. In particular, the comparison between the multi-cell and single-cell sections and the effects of the cross-section ratio and taper ratio of the model on the Eigen frequencies were analyzed. However, the results compared when the asymmetry of the section was considered and warping function were not corrected.

Improvement of Cross-section Estimation Method for Flood Stage Analysis in Unmeasured Streams (미계측 하천의 홍수위 해석을 위한 단면 추정 기법 개선)

  • Jun, Sang Min;Hwang, Soon Ho;Song, Jung-Hun;Kim, Si Nae;Choi, Soon-Kun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.11-22
    • /
    • 2019
  • The objective of this study was to improve the cross-sectional area and height estimation method using stream width. Stream water levels should be calculated together to simulate inundation of agricultural land. However, cross-sectional survey data of small rural rivers are insufficient. The previous study has developed regression equations between the width and the cross-sectional area and between the width and the height of stream cross-section, but can not be applied to a wide range of stream widths. In this study, cross-sectional survey data of 6 streams (Doowol, Chungmi, Jiseok, Gam, Wonpyeong, and Bokha stream) were collected and divided into upstream, midstream and downstream considering the locations of cross-sections. The regression equations were estimated using the complete data. $R^2$ between the stream width and cross-sectional area was 0.96, and $R^2$ between width and height was 0.81. The regression equations were also estimated using divided data for upstream, midstream and downstream considering the locations of cross-sections. The range of $R^2$ between the stream width and cross-sectional area was 0.86 - 0.91, and the range of $R^2$ between width and height was 0.79 ? 0.92. As a result of estimating the cross-sections of 6 rivers using the regression equations, the regression equations considering the locations of cross-sections showed better performance both in the cross-sectional area and height estimation than the regression equations estimated using the complete data. Hydrologic Engineering Center - River Analysis System (HEC-RAS) was used to simulate the flood stage analysis of the estimated and the measured cross-sections for 50-year, 100-year, and 200-year frequency floods. As a result of flood stage analysis, the regression equations considering the locations of cross-sections also showed better performance than the regression equations estimated using the complete data. Future research would be needed to consider the factors affecting the cross-sectional shape such as river slope and average flow velocity. This study can be useful for inundation simulation of agricultural land adjacent to an unmeasured stream.

Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis

  • Qiuyang Cheng;H. Elhosiny Ali;Ibrahim Albaijan
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.215-228
    • /
    • 2023
  • The vibrational behavior of nanoelements is critical in determining how a nanostructure behaves. However, combining vibrational analysis with stability analysis allows for a more comprehensive knowledge of a structure's behavior. As a result, the goal of this research is to characterize the behavior of nonlocal nanocyndrical beams with uniform and nonuniform cross sections. The nonuniformity of the beams is determined by three distinct section functions, namely linear, convex, and exponential functions, with the length and mass of the beams being identical. For completely clamped, fully pinned, and cantilever boundary conditions, Eringen's nonlocal theory is combined with the Timoshenko beam model. The extended differential quadrature technique was used to solve the governing equations in this research. In contrast to the other boundary conditions, the findings of this research reveal that the nonlocal impact has the opposite effect on the frequency of the uniform cantilever nanobeam. Furthermore, since the mass of the materials employed in these nanobeams is designed to remain the same, the findings may be utilized to help improve the frequency and buckling stress of a resonator without requiring additional material, which is a cost-effective benefit.