• 제목/요약/키워드: Cross linking

검색결과 661건 처리시간 0.029초

국내 학술지 논문의 DOI 기반 연계시스템 구축에 관한 연구 (A Study on the Development of Reference Linking System Based on Digital Object Identifier for Korean Journal Articles)

  • 한혜영;정동열
    • 정보관리학회지
    • /
    • 제17권4호
    • /
    • pp.207-227
    • /
    • 2000
  • 최근 해외 주요 학술지 출판사들은 특정 정보제공기관의 한정된 자원의 효율을 극대화시킬 수 있는 한 방법으로써 여러 출판사간, 동종 혹은 이종의 학술지에 대한 각종 인용문헌으로의 연계를 지칭하는 참조연계(reference linking)를 시도하고 있다. 본 연구는 국내 분산된 학술지 논문의 통합 검색, 원문의 식별 그리고 원문간 참조연계 서비스를 제공하기 위한 중양집중식 모델인 '학술지 논문 연계시스템' (Electronic Research Resources Reference Linking System:E3R/LS)을 설계$.$구현하고 추후 실제 시스템에 적용할 수 있는 방안을 제시하였다. 국내 학술지 논문 연계서비스의 시스템 구축을 위한 중요한 구성요소로서, 첫째, 인터넷 자원에 대한 연계 기능과 인터넷상에 존재하는 자원의 식별자로서는 IETF URN의 한 종류인 DOI(Digital Object Identifier)를 이용하였고, 기존 연속 간행물 식별자인 SICI(Serial Item Contribution Identifier)를 국내 학술지에 적용하기 위한 한글 문자를 허용하는 확장된 개념의 구문법을 새롭게 정의하여 DOI의 접미부로 활용하였다. 둘째 구성요소로서는 Dublin Core(DC)를 사용하여 통합 데이터베이스 검색에 필요한 메타데이터를 기술하였다. 마지막 구성요소로서 하나의 DOI를 원문의 위치정보인 URL로 변환하는 작업을 가능하게 하는 CNRI 변환기를 활용하였다.

  • PDF

가교화 찹쌀전분의 물리화학적 성질 및 유과제조 특성 (Physicochemical Properties of Cross-linked Waxy Rice Starches and Its Application to Yukwa)

  • 유철;최현욱;김종태;안순철;최성원;김병용;백무열
    • 한국식품과학회지
    • /
    • 제39권5호
    • /
    • pp.534-540
    • /
    • 2007
  • 유과 제조 시 제조 시간을 단축할 수 있는 소재를 개발하기 위하여 찹쌀전분을 $POCl_3$와 반응시켜 가교화 찹쌀전분을 제조하고 이들의 물리화학적 특성을 연구하였다. 가교화 찹쌀전분의 치환율은 0.04-2.73으로 나타났으며, 팽윤력은 일반 찹쌀전분에 비해 약간 증가되는 경향을 보였으며 용해도는 일반 찹쌀전분보다 낮은 경향을 보였다. 등온흡습곡선은 가교화에 따른 유의적인 차이를 보이지 않았다. 전분의 pasting 특성을 검토한 결과, 호화개시온도는 가교화에 따른 변화가 없는 것으로 나타났으며, 최대점도, holding strength, final viscosity, setback은 일반 찹쌀전분보다 높아지는 결과를 나타냈다. 열적특성은 호화개시온도, 최대호화온도, 호화종결온도 그리고 호화엔탈피 모두 각 전분간에 유의적인 차이가 나타나지 않았다. X-ray회절 분석 결과로 볼 때, 가교화 찹쌀전분 및 일반 찹쌀전분 모두 A형의 결정 형태를 나타내었고, 상대적 결정화도의 차이가 나타나지 않는 것으로 보아 가교화가 찹쌀전분의 결정형영역에는 영향을 주지 않는 것으로 보여진다. 가교화 찹쌀전분을 사용하여 제조한 유과의 경우 일반 찹쌀을 장시간 침지한 후 제조한 시료와 비슷한 팽화율을 나타내었으며 시료의 변색 반응이 나타나지 않는 것으로 보아 유과 제조용 소재로서 적합한 것으로 판단되었다.

앱타머와 단백질간 가교를 이용한 바이오마커 진단 방법 개발 (The Method Development for Biomarker Diagnosis Based on the Aptamer-protein Crosslink)

  • 이보람;김진우;김병기
    • KSBB Journal
    • /
    • 제26권4호
    • /
    • pp.352-356
    • /
    • 2011
  • The detection of biomarkers is an important issue for disease diagnosis. However, many systems are not suitable to detect the biomarker itself directly. For direct detection of biomarker proteins in human serum, a new affinity-capture method using aptamers combined with the mass spectrometry was suggested. Since signals from protein samples cannot be amplified, modified chromatin immunoprecipitation (ChIP) and subsequent cross-linking with formaldehyde between aptamers and target proteins were used not to lose the captured target proteins, which allowed us to perform a harsh washing step to remove the non-specifically bound proteins. As a model system, a thrombin aptamer was used as a bait and thrombin as a target protein. Using our modified ChIP and affinity-capture method, non-specific binding proteins on the beads decreased significantly, suggesting that our new method is efficient and can be applied to developing diagnosis systems for various biomarkers.

Physical Properties of Gelidium corneum Films Treated with Cinnamaldehyde - Research Note -

  • Ku, Kyoung-Ju;Seo, Yung-Bum;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • 제12권2호
    • /
    • pp.122-125
    • /
    • 2007
  • Gelidium corneum films were prepared using cinnamaldehyde as a cross-linking agent and their physical properties were determined. Tensile strength (TS) value of the film containing 0.01% cinnamaldehyde was higher than the control by 8.31 MPa. However, increasing cinnamaldehyde from 0.01% to 0.1% significantly decreased TS from 9.54 MPa to 0.03 MPa, and no film was formed at 1% cinnamaldehyde. On the contrary, when cinnamaldehyde content was increased from 0.01% to 0.1%, % elongation was increased from 1.44% to 2.75%. Water vapor permeability (WVP) of the film containing 0% and 0.01% cinnamaldehyde were 1.64 ng m/m$^2$sPa and 1.42 ng m/m$^2$sPa, respectively. There was no significant difference in Hunter values among treatments. Scanning electron microscopy results revealed that both cinnamaldehyde and control films had similar surfaces. These results suggest that 1.5% Gelidium corneum treated with 0.01% cinnamaldehyde should be the most suitable condition for film formation.

전기방사를 이용한 히알루론산 멤브레인의 제조 및 금 나노입자 촉매 담체로의 응용 (Fabrication of hyaluronic acid membrane using electrospinning method and its application as a catalyst support for gold nanoparticles)

  • 이남훈;박현민;이상명;이대원
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.15-19
    • /
    • 2018
  • In this study, hyaluronic acid (HA) was electro-spun to fabricate nanofibrous membranes for support materials. Because HA is very hygroscopic, it is difficult to obtain enough viscosity to apply electrospinning method. Therefore, we mixed HA with polyethylene oxide (PEO) to obtain proper viscosity and added adipic acid (ADH) to promote cross-linking of PEO/HA during electrospinning. The morphology of PEO/HA membrane was optimized according to PEO/HA concentration ratio and spinning rate. Finally, we fabricated gold-nanoparticle-embedded PEO/HA membranes and their catalyst activities were evaluated in tetramethylbenzidine (TMB) oxidation.

Identification of the Capsid Protein-binding Region of the SL1(+) RNA Located at the 5' Region of the Potato virus X Genome

  • Cho, Sang-Yun;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.75-80
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) contains $cis$-acting elements including stem-loop 1 (SL1) RNA at the 5' region; SL1 is conserved among all potexviruses. The SL1 at the positive-sense RNA, SL1(+), is required for PVX RNA replication, cell-to-cell movement, and translation. Previous research demonstrated that SL1(+) RNA also serves as the origin of assembly for encapsidation of PVX RNA. To identify the essential sequences and/or regions for capsid protein (CP) subunit recognition within SL1(+) RNA, we used electrophoretic mobility shift assays (EMSA), UV cross-linking, and yeast three-hybrid analyses. The EMSA and UV cross-linking analyses with PVX CP subunits and RNA transcripts corresponding to the SL1(+) RNA showed that the SL1(+) RNA formed complexes with CP subunits. We also conducted EMSA and yeast three-hybrid analyses with RNAs containing various mutations of SL1(+) RNA elements. These analyses indicated that SL1(+) RNA is required for the interaction with PVX CP and that the RNA sequences located at the loop C and tetra loop of the SL1(+) are crucial for CP binding. These results indicate that, in addition to being important for RNA accumulation, the SL1(+) RNA from the 5' region of the PVX genome is also required for specific binding of PVX CP.

아르곤 이온빔 조사로 형성된 주름진 PDMS 표면 경화층의 이질성 (Heterogeneity of hard skin layer in wrinkled PDMS surface fabricated by Ar ion beam irradiation)

  • Lee, Seunghun;Byeon, Eunyeon;Kim, Do-Geun;Jung, Sunghoon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.43.1-43.1
    • /
    • 2018
  • Spatial distribution of binding state in depth direction is investigated in a hard skin layer on soft polydimethylsiloxane (PDMS) fabricated by Ar ion beam irradiations. The hard skin layer known as a silica-like homogenous layer was composed of two layers. Impinging Ar ions transfer energy to PDMS as a function of collisional energy transfer rate, which is the maximum at surface and decreases gradually as an ion penetrates. This formed the heterogeneous hard skin layer that consists of a top-most layer and an intermediate layer. XPS depth profiling showed the existence of the top-most layer and intermediate layer. In the top-most layer, scission and cross-linking were occurred simultaneously and Si-O bond showed dissociated status, SiOx (x = 1.25 - 1.5). Under the top-most layer, there was the intermediate layer in which cross-linking is mainly occurred and Si-O bond showed silica-like binding status, SiOx (x = 1.75 - 2). And theoretical analysis which calculates the collisional energy transfer and a displacement per atom explained the thickness variation of top-most layer according to Ar ion energy from 360 eV to 840 eV.

  • PDF

산업용 효소로써 티로시나아제 연구의 최근 동향 (Recent Advances in Tyrosinase Research as An Industrial Enzyme)

  • 김혜린;김현미;최유성
    • KSBB Journal
    • /
    • 제29권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Tyrosinases catalyze the hydroxylation of monophenolic compounds and the conversion of o-diphenols to oquinones. The enzymes are mainly involved in the modification of tyrosine into L-3,4-dihydroxyphenyl-alanine (L-DOPA) and DOPA/DOPAquinone-drived intermolecular cross-linking, which play the key roles of pigmentation to the cells. It is ubiquitously distributed in microorganisms, plants, and animals all around the nature world. They are classified as copper- containing dioxygen activating enzymes; two copper ions are coordinated with six histidine residues in their active sites and they are distinguished as met-, deoxy-, and oxy-form depending on their oxidative states. Natural extraction and recombinant protein approaches have been tried to obtain practical amounts of the enzymes for industrial application. Tyrosinases have been widely applied to industrial and biomedical usages such as detoxification of waste water containing phenolic compounds, L-DOPA as a drug of Parkinson's disease, biomaterials preparation based on the cross-linking ability and biosensors for the detection of phenolic compounds. Therefore, this review reports the mechanism of tyrosinase, biochemical and structural features and potential applications in industrial field.

Preparation of Molecularly Imprinted Polymers Using Photocross-linkable Polyphosphazene and Selective Rebinding of Amino Acids

  • Lee, Seung-Cheol;Chang, Ji-Young
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.522-527
    • /
    • 2009
  • A photocrosslinkable polyphosphazene was used for molecular imprinting. We synthesized polyphosphazene (3) having urea groups for complexation with N-carbobenzyloxyglycin (Z-Gly-OH, template) and chalcone groups for cross-linking reaction. As substituents, 4-hydroxycha1cone (1) and N-(4-hydroxyphenyl)-N'-ethylurea (2) were prepared. Choloro groups of poly(dichlorophosphazene) were replaced by the sequential treatment with sodium salts of compounds 1 and 2, and trifluoroethanol. The template molecule was complexed with the urea groups on the polymer chains via hydrogen bonding. A thin polymer film was prepared by casting a solution of the complex of polymer 3 and the template in dimethylformamide on a quartz cell and irradiated with 365 nm UV light to yield a cross-linked film with a thickness of about $16{\mu}m$. The template molecules in the film were removed by Soxhlet extraction with methanol/acetic acid. The control polymer film was prepared in the same manner for the preparation of the imprinted polymer film, except that the template and triethylamine were omitted. In the rebinding test, the imprinted film exhibited much higher recognition ability for the template than the control polymer. We also investigated the specific recognition ability of the imprinted polymer for the template and its structural analogues. The rebinding tests were conducted using Z-Glu-OH, Z-Asp($O^tBu$)-OH, and Z-Glu-OMe. The imprinted film showed higher specific recognition ability for the template and the lowest response for Z-Asp($O^tBu$)-OH.

이온주입에 의한 고분자(Polyphenylene Sulfide)표면 특성 변화와 선에너지전달(Pineal Energy Transfer)과의 관계 (The Relation Among the Linear Energy Transfer and Changes of Polyphenylene Sulfide Surface by ion Implantation)

  • 이재상;김보영;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.407-413
    • /
    • 2005
  • Ion implantation provides a unique way to modify the mechanical, optical and electrical properties of polymer by depositing the energy of ions in the material on the atomic scale. Implantation of ions into the polymers generally leads to a radiation damage, which, in many cases, modifies the properties of the surface and bulk of the material. These modifications result from the changes of the chemical structure caused in their turn by changing the chemical bonding when the incident ions cut the polymer chains, breaks covalent bonds, promotes cross-linking, and liberates certain volatile species. We studied the relation among the linear energy transfer (LET) and changes of surface microstructure and surface resistivity on PPS material using the high current ion implantation technology The surface resistivity of nitrogen implanted PPS decreased to $10^{7}{\Omega}/cm^{2}$ due to the chain scission, cross linking, ${\pi}$ electron creation and mobility increase. In this case, the surface conductivity depend on the 1-dimensional hopping mechanism.