• 제목/요약/키워드: Cross flow response

검색결과 76건 처리시간 0.03초

직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석 (Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh)

  • 한명륜;안형택
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.

풍하중을 받는 테이퍼 고층건물의 진동변위응답 평가 (The Evaluation in Displacement Response of Tapered Tall Buildings to Wind Load)

  • 조지은;유기표;김종수;김영문
    • 한국공간구조학회논문집
    • /
    • 제5권4호
    • /
    • pp.101-108
    • /
    • 2005
  • 고층건물의 진동응답을 저감시키기 위한 다양한 방법들이 연구되고 있다. 이들 진동응답의 저감 연구는 건물의 외관을 병화 시키는 방법과 건물에 부가감쇠장치를 설치하는 방법들이 있는데 본 논문에서는 고층 건물의 형태의 변화에 다른 진동변위응답의 특성을 파악하고자 한다. 고층건물의 형태변화 중에서도 외관에 테이퍼를 수는 방법을 사용하였다. 기류의 특성은 도심 및 교외지역을 중심으로 풍동실험을 실시하였다.

  • PDF

소형 송풍기 소음의 음향학적 상사성에 관한 연구 (Acoustical Similarity for Small Cooling Fans Revisited)

  • 김용철;진성훈;이승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.196-201
    • /
    • 1995
  • The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.

  • PDF

불균질지층내 지하수 유동의 확률론적 분석 : 무작위성 분포 재생을 통한 가상적 수리시험 (Stochastic Simulation of Groundwater Flow in Heterogeneous Formations: a Virtual Setting via Realizations of Random Field)

  • Lee, Kang-Kun
    • 대한지하수환경학회지
    • /
    • 제1권2호
    • /
    • pp.90-99
    • /
    • 1994
  • 수리전도도의 대수값이 정규 분포를 갖고 또 공간적 상관관계를 갖는 무작위 변수라는 가정하에 지하수 유동영역 안에서 불균질한 수리전도도를 발생시켰다. 발생된 수리전도도의 거리에 따른 공분산값의 변화는 이론적으로 제시되는 변화와 잘 일치된다. 지하수위와 수리전도도는 확률론적으로 작용하는 무작위 변수들로 보고 수리 전도도와 지하수위에 대한 확률 통계적 분석을 위해 몬테카를로 시뮬레이션 방법과 유한요소법을 이용하였다. 지하수위와 수리전도도의 분산값은 지하수 유동영역의 점원, 경계조건, 수위구배, 흐름방향 및 상관 거리에 따라 특징적인 분포를 보인다. 특히 수위와 수리전도도간의 공분산값이 음수인 영역은 유동 시스템의 변화에 영향을 거의 받지 않는 영역으로 볼 수 있어서 영향권의 도출과 관계시킬 수 있다.

  • PDF

Cross flow response of a cylindrical structure under local shear flow

  • Kim, Yoo-Chul;Rheem, Chang-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.101-107
    • /
    • 2009
  • The VIV (Vortex-Induced Vibration) analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.

Laminar-Turbulent Transition Research and Control in Near-wall Flow

  • Boiko A.V.;Chun H.H.
    • Journal of Ship and Ocean Technology
    • /
    • 제8권4호
    • /
    • pp.10-16
    • /
    • 2004
  • A response of a swept wing boundary layer to a single free-stream stationary axial vortex of a limited spanwise extent is considered as an example of typical problems that one can find in laminar-turbulent transition research and control. The response is dominated by streamwise velocity perturbations that grow quasi-exponentially downstream. It is shown that the formation of the boundary layer disturbance occurs for the most part close to the leading edge. The disturbance represents itself a wave packet consisted of the waves with characteristics specific for cross-flow instability. However, an admixture of growing disturbances whose origin can be attributed to transient effects and to a distributed receptivity mechanism is also identified.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

합성제트 기반의 유량 공급 장치에 대한 수치적 연구 (NUMERICAL STUDY ON SYNTHETIC-JET-BASED FLOW SUPPLYING DEVICE)

  • 박명우;이준희;김종암
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.77-83
    • /
    • 2015
  • Flow characteristics of synthetic jet based flow supplying devices have been computationally investigated for different device shapes. Jet momentum was produced by the volume change of a cavity by two piezoelectric-driven diaphragms. The devices have additional flow path compared with the original synthetic jet actuator, and these flow path changes the flow characteristics of synthetic jet actuator. Four non-dimensional parameters, which were functions of the shapes of the additional flow path, were considered as the most critical parameters in jet performance. Comparative studies were conducted to compare volume flow rate and jet velocity. Computed results were solved by 2-D incompressible Navier-Stokes solver with k-w SST turbulence model. Detailed computations revealed that the additional flow path diminishes suction strength of the synthetic jet actuator. In addition, the cross section area of the flow path has more influence over the jet performances than the length of the flow path. Based on the computational results, the synthetic jet based flow supplying devices could be improved by applying suitable shape of the flow path.

AC 솔레노이드 밸브의 설계 및 특성 (Design and Characteristic of the AC Solenoid Valve)

  • 김동수;전용식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3056-3061
    • /
    • 2007
  • The technology of AC solenoid valves is now considered as a core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for medical applications. And AC solenoid valves, which operate by compressed air, are characterized by high speed response, great repeatability and that the pressure on the cross sectional area of poppet is kept constant regardless of the fluctuation of the pressure exerted on the ports. In this study, AC solenoid valves that posses the high-speed responsibility and the high rate of flow have designed and analyzed through the law of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, Flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

7mm폭의 Micro Valve 자장 및 유동특성 고찰 (An Investigation into Micro Valve Field and Flow Field Characteristic of 7mm Width)

  • 전용식;김동수;신동윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.657-658
    • /
    • 2006
  • Recently, the micro on-off valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for micro valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate micro on-off valve using the analogy of equivalent magnetic circuit and Finite Element Method(FEM) respectively. In case of poppet, flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF