• Title/Summary/Keyword: Cross Section

Search Result 4,711, Processing Time 0.033 seconds

Time-Dependent Analysis of Prestress Concrete Bridge Considering Creep and Shrinkage (크리프 및 건조수축을 고려한 PSC 교량의 시간의존해석)

  • Park, Moon-Ho;Park, Soon-Eung;Kim, Jin-Kyu;Park, Jung-Hwal;Kim, Bok-Nam;Lee, Seung-Yup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.3
    • /
    • pp.125-131
    • /
    • 2010
  • This study is to give more accurate information by performing the time depend ent analysis to take into account the long-term losses of precast PSC concrete bridge and analyzing the second stress, final camber and cross section stress of precast PSC caused by creep and drying shrinkage. As time goes by, the stress and deformation in the cross section vary continuously by the influence of creep and drying shrinkage. Due to this, the stress redistribution occurs and the internal force variation also happens along the point on the same cross section and with the passage of time.

  • PDF

A Study on the Optimal Design of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 최적설계에 관한 연구)

  • Noh, Kum-Rae;Yun, Hee-Taek;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.139-149
    • /
    • 2000
  • In the preliminary design stage of prestressed concrete (PSC) box girder bridges, the design factors decided by inexperience designer could heavily affect to the results of final design. There is a possibility that the design ends up with an excessively wasteful design. To achieve an economical design with preventing an excessive design, the optimal design technique has been developed using ADS optimal program and SPCFRAME in this study. The objective function for the optimal design problem is the material cost of box girders and constrained functions are constituted with design specifications and workability. The Sequential Unconstraint Minimization Technique (SUMT) is used for the optimal design in this study. We designed an uniform cross-section bridge and an ununiform cross-section bridge in the same design condition by optimal design technique developed in this study. Analyzing the results obtained for various tendon layouts, we suggest a standard tendon layout which gives the most effective structural behavior.

  • PDF

A Study on the Characteristics of Laser Deposition Surface and Cross-section for Metal Powder (금속 분말의 레이저 적층 시 표면 및 단면 특성에 관한 연구)

  • Hwang, Jun-Ho;Shin, Seong-Seon;Jung, Gu-In;Kim, Sung-Wook;Kim, Hyun-Deok
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.17-22
    • /
    • 2016
  • In this study, we compared the physical and chemical properties evaluation for each size in the SUS316L metal powder produced by water atomization and gas atomization. and we analyzed the experimental data in order to find the basis of a suitable metal powder (SUS316L) for DED (Direct Energy Deposition) processing. Also it evaluated the properties of each layered surface and cross section according to the number of deposition and deposition speed. In the result of optical microscopy measurements, the metal powder by water atomization was the crack generated between the deposition layer, the deposition layer was poor quality. However, metal powder by gas atomization was obtained a relatively good deposition results than metal powder by water atomization.

Development of radar cross section analysis system of naval ships

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Choi, Tae-Muk;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.20-32
    • /
    • 2012
  • A software system for a complex object scattering analysis, named SYSCOS, has been developed for a systematic radar cross section (RCS) analysis and reduction design. The system is based on the high frequency analysis methods of physical optics, geometrical optics, and physical theory of diffraction, which are suitable for RCS analysis of electromagnetically large and complex targets as like naval ships. In addition, a direct scattering center analysis function has been included, which gives relatively simple and intuitive way to discriminate problem areas in design stage when comparing with conventional image-based approaches. In this paper, the theoretical background and the organization of the SYSCOS system are presented. To verify its accuracy and to demonstrate its applicability, numerical analyses for a square plate, a sphere and a cylinder, a weapon system and a virtual naval ship have been carried out, of which results have been compared with analytic solutions and those obtained by the other existing software.

Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2788-2802
    • /
    • 2021
  • Multigroup cross section (MG XS) generation by the UNIST in-house Monte Carlo (MC) code MCS for fast reactor analysis using nodal diffusion codes is reported. The feasibility of the approach is quantified for two sodium fast reactors (SFRs) specified in the OECD/NEA SFR benchmark: a 1000 MWth metal-fueled SFR (MET-1000) and a 3600 MWth oxide-fueled SFR (MOX-3600). The accuracy of a few-group XSs generated by MCS is verified using another MC code, Serpent 2. The neutronic steady-state whole-core problem is analyzed using MCS/RAST-K with a 24-group XS set. Various core parameters of interest (core keff, power profiles, and reactivity feedback coefficients) are obtained using both MCS/RAST-K and MCS. A code-to-code comparison indicates excellent agreement between the nodal diffusion solution and stochastic solution; the error in the core keff is less than 110 pcm, the root-mean-square error of the power profiles is within 1.0%, and the error of the reactivity feedback coefficients is within three standard deviations. Furthermore, using the super-homogenization-corrected XSs improves the prediction accuracy of the control rod worth and power profiles with all rods in. Therefore, the results demonstrate that employing the MCS MG XSs for the nodal diffusion code is feasible for high-fidelity analyses of fast reactors.

Mechanical Effects of Pipe Drawing Angle and Reduction Rate on Material (파이프 인발 각도에 따른 기계적 효과 및 재료에 따른 감소율에 관한 연구)

  • Seo, Youngjin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.8-13
    • /
    • 2020
  • Seamless pipes are fabricated by drilling a hole in a cylindrical material and drawing the material to the desired diameter. These pipes are used in environments where high reliability is required. In this study, the pipe drawing process was simulated using DEFORM, a commercial finite element method (FEM) analysis program. The outer diameter of the steel cylinder used herein before drawing was 70 mm, and the target outer diameter was 58 mm. The drawing process consisted of two stages. In this study, the effect of cross-sectional reduction rate on the pipe was investigated by varying the cross-sectional reduction rate in each step to achieve the target outer diameter. The results of this study showed that the first section reduction rate of 26% and the second section reduction rate of 13.9% caused the lowest damage to the material. Moreover, the FEM simulation results confirmed the influence of the drawing die angle on the pipe drawing process. The drawing die angles of 15° in the first step and 9° in the second step caused the least damage to the material.

Study on the effect of Post Open laser Lumbar Micro-discectomy on the Cross Section Area of Deep Muscles in Patients (요추부 미세 현미경 레이져 디스크 수술(OLM)이 환자의 심부근육 단면적 크기에 미치는 영향)

  • Kong, Bong-Jun;Kim, Jin-Sang;Min, Dong-Ki
    • PNF and Movement
    • /
    • v.10 no.2
    • /
    • pp.25-31
    • /
    • 2012
  • Purpose : The purpose of this study is to figure out the effects of Open Laser Microdiscectomy(OLM) on deep muscles by comparing multifidus and longissimus muscle size (cross section area; CSA) of pre and post operation. Methods : The subjects consisted of forty patients who had OLM. The data were analyzed with paired t-test comparing left and right deep muscle CSA of pre and post-operation, and both the deep muscle CSA of pre and post-operation, using SPSS ver. 15.0 program. Results : The results of this study showed a significant difference in deep muscle size (CSA) between pre and post operation (p<.05). Although there was not a meaningful difference between right and left deep muscle size (CSA) in pre operation (p>.05), there was a significant difference between both of them in post operation (p<.05). Conclusion : Therefore we made the conclusion that the operation causes decrease of muscle tone in deep muscles and muscle imbalance by causing muscle atrophy in the lumbar deep muscle after the operation.

Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0 (형상비 4.0인 비내진 철근콘크리트 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.59-66
    • /
    • 2020
  • Two octagonal RC bridge columns of small scale model were tested under cyclic lateral load with constant axial load. One in two specimens was solid cross section, the other was hollow cross section. The volumetric ratio of transverse spiral hoop of all specimens is 0.00206. The columns showed flexure-shear failure. Failure behavior and seismic performance were investigated. The test results showed that the structural performance of the hollow specimen such as initial crack pattern, initial stiffness, and energy dissipation performance was comparable to that of the solid specimen, but the lateral strength, ultimate displacement, energy dissipation performance of hollow specimen noticeably decreased after drift ratio of 3%.

Business Cycle Consumption Risk and the Cross-Section of Stock Returns in Korea (경기순환주기 소비위험과 한국 주식 수익률 횡단면)

  • Kang, Hankil
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.98-105
    • /
    • 2021
  • Using the frequency-based decomposition, I decompose the consumption growth to explain well-known patterns of stock returns in the Korean market. To be more specific, the consumption growth is decomposed by its half-life of shocks. The component over four years of half-life is called the business-cycle consumption component, and the components with half-lives under four years are short-run components. I compute the long-run and short-run components of stock excess returns as well and use component-by-component sensitivities to price stock portfolios. As a result, the business-cycle consumption risk with half-life of over four years is useful in explaining the cross-section of size-book-to-market portfolios and size-momentum portfolios in the Korean stock market. The short-run components have their own pricing abilities with mixed direction, so that the restricted one short-term factor model is rejected. The explanatory power with short- and long-run components is comparable to that of the Fama-French three-factor model. The components with one- to four-year half-lives are also helpful in explaining the returns. The results about the long-run components emphasize the importance of long-run component in consumption growth to explain the asset returns.

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.