• Title/Summary/Keyword: Cross Polarization

Search Result 245, Processing Time 0.032 seconds

Broadband Stacked Patch Antenna with Low VSWR and Low Cross-Polarization

  • Wang, Zhongbao;Fang, Shaojun;Fu, Shiqiang
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.618-621
    • /
    • 2010
  • A low cross-polarization broadband stacked patch antenna is proposed. By means of the stacked patch configuration and probe-fed strip feed technique, the VSWR 1.2:1 bandwidth of the patch antenna is enhanced to 22% from 804 MHz to 1,002 MHz, which outperforms the other available patch antennas (<10%). Furthermore, the antenna has a cross-polarization level of less than -20 dB and a gain level of about 9 dBi across the operating bandwidth. Simulation results are compared with the measurements, and a good agreement is observed.

The Circular Polarization Diversity Effect Considering XPD Factor in an Indoor Radio Propagation Environment

  • Ahn Je-Sung;Ha Deock-Ho;Cho Pyung-Dong
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.24-29
    • /
    • 2006
  • In this paper, we analyzed new two-branch polarization diversity at the receiving end of a mobile link which a transmitter emits circularly polarized wave. To analyze the correlation coefficient considered by XPD(Cross Polarization Discrimination) between the two received signals, a simple theoretical model of circular polarization diversity is adopted and experimental measurements are also conducted. From both theoretical and measurement results, it can be seen that the proposed circular polarization diversity scheme is more effective than that of the conventional linear polarization diversity.

Circular Polarization Diversity in Indoor Wireless Mobile Environments

  • Ha, Deock-Ho;Ko, Yeon-Hwa;An, Jae-Sung;Kim, Tai-Hong
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.128-136
    • /
    • 2004
  • In this paper,. with the aim of achieving the expected performance improvement for a polarization diversity system, we analyzed two-branch polarization diversity at the receiving end of a mobile link which a transmitter emits circularly polarized wave. In this analysis, to calculate the correlation coefficient considered by XPD(cross polarization discrimination) between the two received signals, a simple theoretical model of circular polarization diversity is adopted. From the analysis results, it is clearly seen that the correlation coefficient of circular polarization diversity evaluated by the XPD is less than that of conventional linear polarization diversity. And also, we designed and implemented a circular polarization diversity system with micro-strip antenna. By using the circular polarization diversity system, we analyzed the measured data in indoor NLOS(Non-Line-Of-Sight) environments. From this analysis results, it is also clearly seen that the diversity effect of circular polarization diversity system shows better performance compared to the conventional linear diversity system by about 3 dB high.

Design and Fabrication of Dual Linear Polarization Antenna for 28 GHz Band (28 GHz 대역에서 동작하는 이중 선형편파 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this paper, we propose single and array antenna with dual linear polarization characteristics for 28 GHz band. The proposed antenna is designed two microstirp feeding structure and Taconic TLY-5 substrate, which is thickness 0.5 mm, and the dielectric constant is 2.2. The size of single patch antenna is 3.4 mm×3.4 mm, and total size of single antenna is 15.11 mm×15.11 mm. Also, the size of array antenna is 3.15 mm×3.15 mm, and total size of array antenna is 21.5 mm×13.97 mm. From the fabrication and measurement results, for 1×2 array antenna, in case of vertical polarization, cross polarization ratios are obtained from 14.23 dB to 20.79 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.31 dB to 22.74 dB for input port 1. in case of vertical polarization, cross polarization ratios are obtained from 15.75 dB to 25.88 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.70 dB to 22.82 dB for input port 2.

A Study on the Branch Composition of an Optimum Polarization Diversity by Considering XPD in Indoor Radio Environments (실내무선 환경에서 XPD를 고려한 최적편파 다이버시티의 브랜치 구성에 관한 연구)

  • 하덕호;이주현;윤영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.302-311
    • /
    • 1999
  • In this paper, in order to suggest an optimal polarization diversity composition method in indoor radio wave propagation environments, the variation of the cross polarization discrimination(XPD) was theoretically analyzed by a computer simulation and compared to the actual measured data. From the results, it can be seen that the cross polarization discrimination of the case, a circularly polarized antenna was used at the transmitting end as well as the vertical and horizontal polarized antenna branches were used at receiving end (CV-CH), is lower than that of the case, horizontal polarized antenna at the transmitting end as well as the horizontal and vertical polarized antenna branches at the receiving end(HH-HV), and that of the case, vertical polarized antenna at the transmitting end as well as the vertical and horizontal polarized antenna branches at the receiving end(VV-VH). In this paper, to get more effective CV-CH polarization diversity composition, the amount of cross polarization discrimination values at the signals received by horizontal polarized antenna is compensated and the polarization diversity effect through the cumulative probability distribution is estimated. From the evaluation results, it was found that the polarization diversity effect was better at the compensated case than at the uncompensated case. On the other hand, it can be known that the polarization diversity effect is getting better as the cross polarization discrimination values are getting lower, and also be known that the effect can be improved if a transmitting antenna is composed of the ellipse polarized antenna by adjusting the axial ratio of the circularly polarized antenna and, a receiving antenna is made up of the vertical and horizontal polarized antenna branches.

  • PDF

Design of 3-D resonator for improvement of interference in ETCS (ETCS 신호 간섭 개선을 위한 3-D 공진기 설계)

  • Kim Ho-Yong;Lee Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.99-104
    • /
    • 2006
  • In this paper, the conventional 2 dimensional metamaterial structure has degeneration of shielding characteristic in cross polarization effect. The proposed 3-D resonator is designed for reduction of cross polarization effect. The proposed 3-D resonator using LTCC consists of 2-D parallel resonators on X-axis, Y-axis and Z-axis. The 2-D parallel resonator consists of two plate and one via. When the co-polarization electric filed is excited, the resonance frequency of 3-D resonator is 5.024GHz. The stop bandwidth is 19MHz. When the cross-polarization electric field is excited, the resonance frequency of 3-D resonator is 4.825GHz. The stop bandwidth is 19MHz. The proposed 3-D resonator achieve reduction of cross-polarization effect. The concrete consists of proposed 3-D resonator and absorbtion materials. The concrete will be applied for reduction or interference signal of ETCS(Electric Toll collection system).

Dice-Five Polarization-Agile Corner-Fed Patch Array Antenna

  • Vallecchi, Andrea
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.250-256
    • /
    • 2005
  • A novel planar polarization-agile microstrip subarray is proposed and its performance assessed by a thorough numerical investigation. The subarray consists of five square patches with a central element, directly coupled to a pair of microstrip feed lines by a cross-shaped aperture, which spreads the power outwards to the other patches through a network of suitable connections. By properly exciting the antenna at its input ports, any kind of polarization of the radiated field can be accomplished with fairly low cross-polarization levels. Moreover, since only two feed lines are required to drive the whole subarray, polarization agility is simply and attractively achieved by a single phase-shift circuit. The design concept is described and the results of the analyses and simulations performed by two completely independent full-wave approaches are presented and discussed.

  • PDF

A Study on the Design of Wideband Microstrip Cross Slot Array Antennas with Circular Polarization (원편파용 광대역 마이크로스트립 크로스 슬롯 어레이 안테나의 설계에 관한 연구)

  • Min, Kyeoung-sik;Ko, Jee-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.894-900
    • /
    • 2004
  • There are many types of circularly polarized(CP) microstrip antenna elements, which are used as a good unit radiator. Since an advantage of CP antenna is no strict alignment requirements between Rx and Tx system, the printed antennas with circular polarization are very often used in numerous satellite and mobile radio systems. In order to realize the broad bandwidth of 3 dB axial ratio and impedance of CP microstrip antenna, complex feed structure and tri-plate patch element have been researched. This paper describes a design of wideband microstrip cross slot array antennas with circular polarization. The proposed antenna is composed of an open-ended microstrip feed line as a feeder and a cross slot as a radiator for circular polarization. To realize the wide bandwidth, tri-plate structure are considered and cross slot is electromagnetically coupled with feed line. Optimum parameters of 1-element cross slot antenna are analyzed and designed by method of moments. These parameters are also applied to may antennas design considered the mutual coupling between radiating elements. Right hand circular polarization(RHCP) and left hand circular polarization(LHCP) of the proposed antenna are easily controlled by asymmetrical cross slot structure and slot position. In 1-element and 15-element cross slot array antenna, the good axial ratio of 1 dB below and the broad bandwidth characteristics of antenna are obtained.

Performance Evaluation and Theoretical Model for the Polarization Diversity using Circularly Polarized Waves in N-LOS Radio Environments (비가시거리 전파환경에서 원형편파를 이용한 편파다이버시티의 이론적 모델 및 성능평가)

  • 이주현;하덕호;박정훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.133-138
    • /
    • 2003
  • In this paper, we analyzed a two-branch polarization diversity at a mobile station in NLOS environment when a base station transmits a circularly polarized wave. In order to calculate the correlation coefficient considering the XPD(cross polarization discrimination) between the received signals for the two diversity branches, a simple theoretical model of circular polarization diversity is adopted. From the analysis results, it can be seen that the XPD of circularly polarized wave is less than vertically polarized wave about 6~7 dB in measurement results. And also, it is clearly seen that the correlation coefficient of circular polarization diversity evaluated by the XPD is less than that of vertical polarization diversity.

A Study on the Propagation Characteristics of Polarization Diversity in rural and Residential Areas (교외 및 주거 지역에서의 편파 다이버시티 전파전파 특성 연구)

  • 임종태;김성진;유봉국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.369-377
    • /
    • 1998
  • In this paper, we performed the comparisons between polarization diversity using dual polarization antennal which has $\pm45^{\circ}$slanted linear polarization characteristics and conventional space diversity in rural and residential areas. The analysis was done by evaluating the diversity gain improvement and cross correlation coefficients between two received signals through each diversity branch. From the results, we could confirmed that space diversity has bigger diversity gain than polarization diversity by 1~2 dB, and there is a little difference of $\pm0.1$ in cross correlation coefficients by analyzing CDF under portable mobile phone environments.

  • PDF