• Title/Summary/Keyword: Cross Laminated Timber

Search Result 45, Processing Time 0.029 seconds

Physical Properties of Fabric E-Glass Fiber Reinforced Laminated Timber (II) - Peeling and vapor adsorption properties - (직물유리섬유강화 집성재의 물리적 특성(제2보) - 박리 및 흡습성 -)

  • Jung, In-Suk;Lee, Weon-Hee;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.35-42
    • /
    • 2003
  • This study was conducted to estimate peeling and vapor adsorption properties made with fabric glass fiber reinforced laminated timber according to our earlier report(Jung et al., 2002). In adsorption peeling test, three all types solid wood were not appeared the peeling. However, solid wood appeared to the peeling in boiling peeling test except for control wood. Vapor adsorption test was performed at 40℃, 90% relative humidity for 48 hours. Cross sections were not different all solid wood. Radial section and tangential section with glass fiber were delayed vapor adsorption compared to control wood. In anisotropy of vapor adsorption, solid wood with glass fiber were small values.

Evaluation of floor impact sound and airborne sound insulation performance of cross laminated timber slabs and their toppings (구조용 직교 집성판 슬래브와 상부 토핑 조건에 따른 바닥충격음 및 공기전달음 평가)

  • Hyo-Jin Lee;Yeon-Su Ha;Sang-Joon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.572-583
    • /
    • 2023
  • Demand for wood in construction is increasing worldwide. In Korea, technical reviews of high-rise Cross Laminated Timber (CLT) buildings are under way. In this paper, Floor Impact Sound Insulation Performance (FISIP) and Transmission Loss (TL) of 150 mm thick CLT floor panels made of two domestic species, Larix kaempferi and Pinus densiflora, are investigated. The CLT slabs were tested in reverberation chambers connected vertically. When comparing Single Number Quantity (SNQ) of FISIP of the bare panels, the Larix CLT is 3 dB lower in heavy-weight and 1 dB in light-weight than the Pinus CLT. However, there was no difference when concrete toppings were added to improve the performance. As the concrete toppings became thicker, the heavy-weight was reduced by 9 dB ~ 20 dB, and the light-weight by 20 dB ~ 30 dB. And the analysis of these results with area density has confirmed that the area densities are highly correlated (R2 = 0.94 ~ 0.99) to the FISIP of the CLT. The types of CLT didn't affect the TL. Comparison of theoretical TL values with measured TL values has shown that the frequency characteristics are similar but 8 dB ~ 12 dB lower in measured values. The relationship between the TL and frequency characteristics of the tested CLT slabs was derived by using the correction value.

Numerical Simulation on Disproportionate Collapse of the Tall Glulam Building under Fire Conditions

  • Zhao, Xuan;Zhang, Binsheng;Kilpatrick, Tony;Sanderson, Iain
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.311-321
    • /
    • 2021
  • Perception of the public to structural fires is very important because there are only a number of tall timber buildings constructed in the world. People are hesitating to accept tall timber buildings, so it is essential to ensure the first generation of tall timber buildings to a very high standard, especially fire safety. Right now, there are no specific design standards or regulations for fire design of tall timber buildings in Europe. Even though heavy timber members have better fire resistance than steel components, many conditions still need to be verified before considering the use of timber materials, e.g. fire spread, post-fire collapse, etc. This research numerically explores the structural behaviours of a tall Glulam building when one of its internal Glulam (Glued laminated timber) columns fails after sustaining a full 120-min standard fire and is removed from the established finite element building model created in SAP2000. The numerical results demonstrate that the failure and removal of the selected internal Glulam column may lead to the local failure of the adjacent CLT (Cross laminated timber) floor slabs, but will not lead to large disproportionate damage and collapse of the whole building. Here, the building is assumed to be located in Glasgow, Scotland, UK.

Mass Timber: The New Sustainable Choice for Tall Buildings

  • Cover, Jennifer
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.87-93
    • /
    • 2020
  • Professionals who work in the realm of tall building design and construction are well aware that high-rises are the best solution for accommodating growing urban populations. Until recently, few would have thought to include tall wood buildings as part of that solution, but there is growing awareness that tall mass timber structures can help satisfy the need for density while addressing the need-equally urgent-for a more sustainable built environment. This paper examines the trend toward tall wood buildings in the United States, including their history and international influences, market drivers, structural performance, and economic viability, as well as building code changes that allow wood structures up to 18 stories. It highlights examples of mass timber projects, with an emphasis on benefits that impact return on investment.

Predicting Lamina Yield from Logs of Different Diameters for Cross Laminated Timber Production

  • Jeong, Gi Young;Lee, Jun-Jae;Yeo, Hwanmyeong;Lee, So Sun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.809-820
    • /
    • 2016
  • The goal of this study was to predict lamina yield from logs of different diameter for production of cross laminated timber. Log characteristics of red pine (Pinus densiflora) and Japanese cedar (Cryptomeria japonica), including diameter, length, volume, and defects were used for statistical and geometrical analyses, along with the lamina characteristics, including width, thickness, and defects. Based on the data obtained, the strong factors influencing the yield and grade of lamina from the two species were statistically evaluated. A geometrical approach was used for analysis of the yield from logs of given diameters. Statistical analysis showed that lamina yield was dependent on target lamina size but the grade of lamina was not related to any of the log characteristics. The suggested yield equations from the geometrical approach indicated an accuracy of less than 20% difference.

Effect of Glass Fiber-Reinforced Connection on the Horizontal Shear Strength of CLT Walls

  • JUNG, Hongju;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.685-695
    • /
    • 2020
  • The connection performance between cross-laminated timber (CLT) walls and support has the greatest effect on the horizontal shear strength. In this study, the horizontal shear performance of CLT walls with reinforced connection systems was evaluated. The reinforcements of metal bracket connections in the CLT connection system was made by attaching glass fiber-based reinforcement to the connection zone of a CLT core lamina. Three types of glass fiber-based reinforcement were used: glass fiber sheet (GS), glass fiber cloth (GT) and fiber cloth plastic (GTS). The horizontal shear strength of the fabricated wall specimens was compared and evaluated through monotonic and cyclic tests. The test results showed that the resistance performance of the reinforced CLT walls to a horizontal load based on a monotonic test did not improve significantly. The residual and yield strengths under the cyclic loading test were 38 and 18% higher, respectively, while the ductility ratio was 38% higher than that of the unreinforced CLT wall. The glass fiber-based reinforcement of the CLT connection showed the possibility of improving the horizontal shear strength performance under a cyclic load, and presented the research direction for the application of real-scale CLT walls.

Lateral Resistance of CLT Wall Panels Composed of Square Timber Larch Core and Plywood Cross Bands

  • JANG, Sang Sik;LEE, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.547-556
    • /
    • 2019
  • Thinned, small larch logs have small diameters and no value-added final use, except as wood chips, pallets, or fuel wood, which are products with very low economic value; however, their mechanical strength is suitable for structural applications. In this study, small larch logs were sawed, dried, and cut into square timbers (with a $90mm{\times}90mm$ cross section) that were laterally glued to form core panels used to manufacture cross-laminated timber (CLT) wall panels. The surface and back of these core panels were covered with 12-mm-thick structural plywood panels, used as cross bands to obtain three-ply CLT wall panels. This attachment procedure was conducted in two different ways: gluing and pressing (CGCLT) or gluing and nailing (NGCLT). The size of the as-manufactured CLT panels was $1,220mm{\times}2,440mm$, the same as that of the plywood panels. The final wall panels were tested under lateral shear force in accordance with KS F 2154. As the lateral load resistance test required $2,440mm{\times}2,440mm$ specimens, two CLT wall panels had to be attached in parallel. In addition, the final CLT panels had tongued and grooved edges to allow parallel joints between adjacent pieces. For comparison, conventional light-frame timber shear walls and midply wall systems were also tested under the same conditions. Shear walls with edge nail spacing of 150 mm and 100 mm, the midply wall system, and the fabricated CGCLT and NGCLT wall panels exhibited maximum lateral resistances of 6.1 kN/m (100%), 9.7 kN/m (158%), 16.9 kN/m (274%), 29.6 kN/m (482%), and 35.8 kN/m (582%), respectively.

Evaluation of Bearing Strength of Self-Tapping Screws according to the Grain Direction of Domestic Pinus densiflora

  • LEE, In-Hwan;KIM, Keonho;SHIM, Kug-bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • To evaluate the bearing strength of red pine cross-laminated timber (CLT) with self-tapping screw (STS), which is widely used as a fastener for connection in CLT building, the bearing test was conducted. Accoring to the STS's diameters (8, 10, 12 mm), the bearing test specimens with half hole were manufactured. Bearing strength was compared and reviewed in consideration of the configuration in STS and the loading direction to the grain of red pine. As a result of the bearing test on the STS's diameter, the yield bearing load increases as the larger diameter of the STS in all directions of the red pine. The bearing strength of the thread part (thread + tip) was higher than the shank part (shank + shank cutter). In compared with the directions to the grain of red pine, the bearing strength of the cross section parallel to the loading direction was the highest, and the tangent section was the lowest bearing strength. The average bearing strength of the loading direction in parallel to the grain was 23.43 MPa, which was about 45% higher than the average 16.16 MPa in perpendicular to the grain. The predicted bearing strength calculated by Eurocode (EN) and Korean Building Code (KBC)'s equation was lower than the experimental value. It is nessesary to propose the new equations of bearing strength reflected the configuration information of STS.

Experimental and Analytical Study of Shear Connectors for the CLT-Concrete Composite Floor System (CLT-콘크리트 합성 거동을 위한 전단 연결재 부재 실험과 해석 연구)

  • Park, A-Ron;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • This paper assesses the structural performance (force-slip response, slip modulus, and failure modes) of a CLT-concrete composite by conducting fifteen push-out test specimens. In addition, non-linear 3D finite element analysis was also developed to simulate the load-slip behavior of the CLT-concrete specimens under shear load. All 15 test specimens simulating the effect of concrete thickness, connection angle and penetration depth with four different shear connector types were built and tested to evaluate the flexural performance. Experimental results show that the maximum shear capacity for the composite action is obtained when the fixing angle is $90^{\circ}$ and the penetration depth of 95mm for SC normal screw was used to achieve ductile failure compared to other shear connectors.