• 제목/요약/키워드: Cross Entropy

검색결과 119건 처리시간 0.021초

Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on MR Images

  • Madusanka, Nuwan;Choi, Yu Yong;Choi, Kyu Yeong;Lee, Kun Ho;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.205-215
    • /
    • 2017
  • The brain magnetic resonance images (MRI) is an important imaging biomarker in Alzheimer's disease (AD) as the cerebral atrophy has been shown to strongly associate with cognitive symptoms. The decrease of volume estimates in different structures of the medial temporal lobe related to memory correlates with the decline of cognitive functions in neurodegenerative diseases. During the past decades several methods have been developed for quantifying the disease related atrophy of hippocampus from MRI. Special effort has been dedicated to separate AD and mild cognitive impairment (MCI) related modifications from normal aging for the purpose of early detection and prediction. We trained a multi-class support vector machine (SVM) with probabilistic outputs on a sample (n = 58) of 20 normal controls (NC), 19 individuals with MCI, and 19 individuals with AD. The model was then applied to the cross-validation of same data set which no labels were known and the predictions. This study presents data on the association between MRI quantitative parameters of hippocampus and its quantitative structural changes examination use on the classification of the diseases.

원전 이차계통 파이프 감육상태 분석를 위한 적응 콘-커널 시간-주파수 분포함수 (Adaptive Cone-Kernel Time-Frequency Distribution for Analyzing the Pipe-Thinning in the Secondary Systems of NPP)

  • 김정택;이상정;이철권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권3호
    • /
    • pp.131-137
    • /
    • 2006
  • The secondary system of nuclear power plants consists of sophisticated piping systems operating in very aggressive erosion and corrosion environments, which make a piping system vulnerable to the wear and degradation due to the several chemical components and high flow rate (~10 m/sec) of the coolant. To monitor the wear and degradation on a pipe, the vibration signals are measured from the pipe with an accelerometer For analyzing the vibration signal the time-frequency analysis (TFA) is used, which is known to be effective for the analysis of time-varying or transient signals. To reduce the inteferences (cross-terms) due to the bilinear structure of the time-frequency distribution, an adaptive cone-kernel distribution (ACKD) is proposed. The cone length of ACKD to determine the characteristics of distribution is optimally selected through an adaptive algorithm using the normalized Shannon's entropy And the ACKD's are compared with the results of other analyses based on the Fourier Transform (FT) and other TFA's. The ACKD shows a better signature for the wear/degradation within a pipe and provides the additional information in relation to the time that any analysis based on the conventional FT can not provide.

Dimesogenic Compounds with Chiral Tails: Synthesis and Liquid Crystalline Properties of a Homologous Series of a, w-Bis[4-(4'-(S)-( -)-2-methylbutoxycarbonylbiphenyl- 4-oxycarbonyl)phenoxy]alkanes

  • 최이준;최봉구;김재훈;진정일
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권1호
    • /
    • pp.110-117
    • /
    • 2000
  • A series of new liquid crystalline dimesogenic compounds with chiral tails was synthesized, and their thermal and liquid crystalline properties were studied. The chain length of the central polymethylene spacers (x) was varied from dimethylene (2) to decamethylene (12). These compounds were characterized by elemental analysis, IR and NMR spectroscopy, differential scanning calorimetry (DSC), and cross-polarizing microscopy. All compounds were found to be enantiotropically liquid crystalline, and the values of melting ($T_m$) and isotropization temperature ($T_i$) as well as enthalpy change (Δ$H_i$) and entropy change for isotropization (Δ$S_i$) decreased in a zig-zag fashion revealing the so-called odd-even effect as x increases. Their mesomorphic properties fall into three categories depending upon x; (a) compounds with x=2 and 4 formed two different mesophases, smectic and cholesteric phases in that order on heating, and vice versa on cooling, (b) compounds with x=3, 7, 8, 10 and 11 reversibly formed only the cholesteric phase, and (c) compounds with x=5, 6, 9 and 12 exhibited only a cholesteric phase on heating, whereas on cooling they formed two different mesophases, cholesteric and smectic phases, sequentially.

온-보드에서의 딥러닝을 활용한 드론의 실시간 객체 인식 연구 (A Study on Realtime Drone Object Detection Using On-board Deep Learning)

  • 이장우;김주영;김재경;권철희
    • 한국항공우주학회지
    • /
    • 제49권10호
    • /
    • pp.883-892
    • /
    • 2021
  • 본 논문에서는 드론을 활용한 감시정찰 임무의 효율성을 향상하기 위해 드론 탑재장비에서 실시간으로 구동 가능한 딥러닝 기반의 객체 인식 모델을 개발하는 연구를 수행하였다. 드론 영상 내 객체 인식 성능을 높이는 목적으로 학습 단계에서 학습 데이터 전처리 및 증강, 전이 학습을 수행하였고 각 클래스 별 성능 편차를 줄이기 위해 가중 크로스 엔트로피 방법을 적용하였다. 추론 속도를 개선하기 위해 양자화 기법이 적용된 추론 가속화 엔진을 생성하여 실시간성을 높였다. 마지막으로 모델의 성능을 확인하기 위해 학습에 참여하지 않은 드론 영상 데이터에서 인식 성능 및 실시간성을 분석하였다.

영상수준과 픽셀수준 분류를 결합한 영상 의미분할 (Semantic Image Segmentation Combining Image-level and Pixel-level Classification)

  • 김선국;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1425-1430
    • /
    • 2018
  • In this paper, we propose a CNN based deep learning algorithm for semantic segmentation of images. In order to improve the accuracy of semantic segmentation, we combined pixel level object classification and image level object classification. The image level object classification is used to accurately detect the characteristics of an image, and the pixel level object classification is used to indicate which object area is included in each pixel. The proposed network structure consists of three parts in total. A part for extracting the features of the image, a part for outputting the final result in the resolution size of the original image, and a part for performing the image level object classification. Loss functions exist for image level and pixel level classification, respectively. Image-level object classification uses KL-Divergence and pixel level object classification uses cross-entropy. In addition, it combines the layer of the resolution of the network extracting the features and the network of the resolution to secure the position information of the lost feature and the information of the boundary of the object due to the pooling operation.

Adaptive Attention Annotation Model: Optimizing the Prediction Path through Dependency Fusion

  • Wang, Fangxin;Liu, Jie;Zhang, Shuwu;Zhang, Guixuan;Zheng, Yang;Li, Xiaoqian;Liang, Wei;Li, Yuejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4665-4683
    • /
    • 2019
  • Previous methods build image annotation model by leveraging three basic dependencies: relations between image and label (image/label), between images (image/image) and between labels (label/label). Even though plenty of researches show that multiple dependencies can work jointly to improve annotation performance, different dependencies actually do not "work jointly" in their diagram, whose performance is largely depending on the result predicted by image/label section. To address this problem, we propose the adaptive attention annotation model (AAAM) to associate these dependencies with the prediction path, which is composed of a series of labels (tags) in the order they are detected. In particular, we optimize the prediction path by detecting the relevant labels from the easy-to-detect to the hard-to-detect, which are found using Binary Cross-Entropy (BCE) and Triplet Margin (TM) losses, respectively. Besides, in order to capture the inforamtion of each label, instead of explicitly extracting regional featutres, we propose the self-attention machanism to implicitly enhance the relevant region and restrain those irrelevant. To validate the effective of the model, we conduct experiments on three well-known public datasets, COCO 2014, IAPR TC-12 and NUSWIDE, and achieve better performance than the state-of-the-art methods.

One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images

  • Li, Zhihang;Huang, Mengqi;Ji, Pengxuan;Zhu, Huamei;Zhang, Qianbing
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.153-166
    • /
    • 2022
  • Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

Dual-loss CNN: A separability-enhanced network for current-based fault diagnosis of rolling bearings

  • Lingli Cui;Gang Wang;Dongdong Liu;Jiawei Xiang;Huaqing Wang
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.253-262
    • /
    • 2024
  • Current-based mechanical fault diagnosis is more convenient and low cost since additional sensors are not required. However, it is still challenging to achieve this goal due to the weak fault information in current signals. In this paper, a dual-loss convolutional neural network (DLCNN) is proposed to implement the intelligent bearing fault diagnosis via current signals. First, a novel similarity loss (SimL) function is developed, which is expected to maximize the intra-class similarity and minimize the inter-class similarity in the model optimization operation. In the loss function, a weight parameter is further introduced to achieve a balance and leverage the performance of SimL function. Second, the DLCNN model is constructed using the presented SimL and the cross-entropy loss. Finally, the two-phase current signals are fused and then fed into the DLCNN to provide more fault information. The proposed DLCNN is tested by experiment data, and the results confirm that the DLCNN achieves higher accuracy compared to the conventional CNN. Meanwhile, the feature visualization presents that the samples of different classes are separated well.

Improving the Recognition of Known and Unknown Plant Disease Classes Using Deep Learning

  • Yao Meng;Jaehwan Lee;Alvaro Fuentes;Mun Haeng Lee;Taehyun Kim;Sook Yoon;Dong Sun Park
    • 스마트미디어저널
    • /
    • 제13권8호
    • /
    • pp.16-25
    • /
    • 2024
  • Recently, there has been a growing emphasis on identifying both known and unknown diseases in plant disease recognition. In this task, a model trained only on images of known classes is required to classify an input image into either one of the known classes or into an unknown class. Consequently, the capability to recognize unknown diseases is critical for model deployment. To enhance this capability, we are considering three factors. Firstly, we propose a new logits-based scoring function for unknown scores. Secondly, initial experiments indicate that a compact feature space is crucial for the effectiveness of logits-based methods, leading us to employ the AM-Softmax loss instead of Cross-entropy loss during training. Thirdly, drawing inspiration from the efficacy of transfer learning, we utilize a large plant-relevant dataset, PlantCLEF2022, for pre-training a model. The experimental results suggest that our method outperforms current algorithms. Specifically, our method achieved a performance of 97.90 CSA, 91.77 AUROC, and 90.63 OSCR with the ResNet50 model and a performance of 98.28 CSA, 92.05 AUROC, and 91.12 OSCR with the ConvNext base model. We believe that our study will contribute to the community.