• Title/Summary/Keyword: Cropping

Search Result 1,295, Processing Time 0.042 seconds

Effects of Elevated Spring Temperatures on the Growth and Fruit Quality of the Mandarin Hybrid 'Shiranuhi' (봄철 가온처리가 부지화의 생장과 과실품질에 미치는 영향)

  • Moon, Young-Eel;Kang, Seok-Beom;Han, Seung-Gab;Kim, Yong-Ho;Choi, Young-Hun;Koh, Seok Chan;Oh, Soonja
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.459-469
    • /
    • 2015
  • The effects of elevated spring temperatures on the growth and fruit quality of the mandarin hybrid 'Shiranuhi' [(Citrus unshiu ${\times}$ C. sinensis) ${\times}$ C. reticulata] were investigated in plastic greenhouses, to develop a cropping system to improve the quality of the fruit and increase the income of growers on Jeju Island, South Korea. Under conditions of elevated temperature I ($25/15^{\circ}C$, day/night) and elevated temperature II ($28/18^{\circ}C$, day/night) during early spring, budburst was advanced by 11 and 15 d, and full bloom by 22 and 45 d, respectively, compared to those of the plants grown at ambient air temperature in a plastic greenhouse. Elevated temperatures decreased the number of spring shoots but increased mean spring shoot length and leaf area. Growing 'Shiranuhi' trees at elevated temperatures resulted in increases in mean fruit weight and fruit L/D ratio (> 1.0). In addition, fruit color development was significantly advanced in trees grown under elevated temperatures during early spring, which allowed the fruit to be harvested 1-2 months earlier than trees grown under ambient air temperature. Fruit soluble solids content (SSC) and titratable acidity (TA) at harvest were similar between elevated temperature I and ambient air temperature, but were significantly higher than at elevated temperature II. Considering fruit quality, harvest time, and yield, the elevated temperature treatment regime of $25/15^{\circ}C$ (day/night) during early spring could be useful for cultivation of the mandarin hybrid 'Shiranuhi' to increase the income of growers.

Agroenvironmental Characteristics and N.P Demand of Paddy Fields Irrigated with the Water of Nagdong River (낙동강 물 관개논의 농업환경 특성과 질소, 인산 요구량)

  • Kang, Ui-Gum;Lee, jae-Saeng;Ko, Ji-Yeon;Park, Chang-Young;Jung, Ki-Yeul
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.170-177
    • /
    • 2004
  • Agroenvironmental characteristics in paddy fields irrigated with the water of Nagdong river were analyzed along the river watershed for two years from 1999. The sites monitored from upper reaches of the river were Andong, Sangju, Gumi, Goryeong, Changnyeong, Milyang and Pusan. In paddy soils, the contents of heavy metals such as Cd, Cr, Cu, Pb, Ni, Zn and As were around natural values showing the highest values in Pusan followed by Goryeong. In brown rice, the contents of heavy metals were lower than natural values. Soil chemical properties appeared higher values in the lower reaches including Goryeong than the upper ones. The highest parameters in Goryeong were pH ($5.9{\sim}6.1$), EC ($0.8{\sim}0.9\;dS/m$), $Av.P_2O_5$ ($155{\sim}201\;mg/kg$), exchangeable Ca ($6.7{\sim}7.4\;cmol^+/kg$), Mg ($1.92{\sim}2.50\;cmol^+/kg$), K ($0.18{\sim}0.21\;cmol^+/kg$) and those in Pusan were organic matter ($23.0{\sim}29.1\;g/kg$) and T-N ($1.6{\sim}1.8\;mg/kg$). In conclusion, the recommended rates of N fertilizer for rice cropping were 21.4%, 11.8% and 8.8% high for Andong, Sangju and Gumi, respectively and 14.9%, 4.6%, 4.5% and 11.5% low for Goryeong, Changnyeong, Milyang and Pusan, respectively reflecting the chemical properties of soils and the quality of irrigation water on the basis of 110 kgN/ha. In the case of phosphorous, the rates were 18.9% and 33.3% low for Changnyeong and others, respectively on the basis of $45\;kgP_2O_5/ha$. The populations of bacteria, fungi, actinomycetes, Bacillus, fluorescent Pseudomonas and Biomass C were high at the lower reaches including Goryeong, which showed relatively much nutrient contents of organic matter, total N and phosphorous etc.

Growth Responses of Soybean in Paddy Field Depending on Soil and Cultivation Methods (콩의 논 재배시 토성 및 재배 방법에 따른 콩의 생장분석)

  • Cho, Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.385-397
    • /
    • 2006
  • This study was conducted to establish the environment-friendly cropping system of soybean in paddy field with different soil textures. When the soybean was cultivated in paddy fields, growth responses of testing cultivars varied depending on soil texture and cultivation method. Growth responses of soybean in sandy loam tended to be better than those in clay, however the effect of high ridged cultivation was distinguished in clay loam. Especially, formation of rhizome nodule was significantly different depending on soils ; more numerous rhizome nodules were formed in sandy loam compared to that in clay. Plant heights of Taekwangkong and Eunhakong were highest in clay and sandy loam, respectively, while the number of pods and branches of Eunhakong were most in both soils. In clay paddy field, growth responses of Eunhakong were best among the testing cultivars, however high ridged cultivation was more appropriate to the cultivar compared to level row cultivation regardless of soils. Taekwangkong showed the highest leaf area indexes during whole growth stages. Leaf development of Daewonkong was suppressed in clay at early growth stage, while it significantly increased as growth stages progressed. Most retard leaf development was observed in early maturity cultivar, Hwaseongputkong, since it seemed to be seriously damaged by excess-moisture injury in both soils. Comparing the dry weight of top plants and roots, plant growth was more affected by soil texture than cultivation methods at early vegetative growth stage, via verses at R2 or R5 stages. In yield characters and yields at R8 maturity stage, pods number of Eunhakong was significantly higher than those of Daewonkong and Taekwangkong estimating to 107 and 124 in clay and sandy loam, respectively. The ratio of ripened seeds was highest in sandy loam in combination with high ridged cultivation, while the lowest in clay with level row. The yields of Deawonkong and Eunhakong were higher compared to other testing cultivars ranged from $l82{\sim}286kg/ha$ depending on soils and cultivation methods. In results, growth responses and yields of testing cultivars tended to be higher in sandy loam in combination with high ridge compared to clay with level row.

  • PDF

Relation between Growth Condition of Six Upland-Crops and Soil Salinity in Reclaimed Land (간척지에서 토양 염류와 6개 밭작물 생육과의 관계)

  • Lee, Seung-Heon;Hong, Byeong-Deok;An, Yeoul;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.66-71
    • /
    • 2003
  • This study was carried out to obtain basic data for selecting the applicable crops in reclaimed land and to provide guidelines for the rotation between paddy and upland cropping. Field experiment was conducted with six summer crops(garland chrysanthemum, young radish, small radish, kale, lettuce, red lettuce) at Dae-Ho reclaimed experiment plots in Dangjin province. Dry weights and plant heights of harvested crops were measured and soil chemical properties were analyzed. Plant height and dry weight decreased significantly with increasing soil saturation paste extract electrical conductivity(ECe) and sodium adsorption ratio(SAR). The threshold ECe of salt inhibition for six crops was less than $1dS\;m^{-1}$ for young radish and kale, greater than $4dS\;m^{-1}$ for garland chrysanthemum, and greater than $6dS\;m^{-1}$ for small radish, lettuce, and red lettuce. At higher ECe that inhibits crop growth, with every increase in $1dS\;m^{-1}$, dry weight index decreased by 3.35 for kale, 3.92 for small radish, 3.98 for young radish, 4.66 for lettuce, 7.57 for garland chrysanthemum, and 8.45% for red lettuce, respectively. The ECe causing 50% reduction of dry weight index was $18.9dS\;m^{-1}$ for small radish, $17.3dS\;m^{-1}$ for lettuce, $15.4dS\;m^{-1}$ for kale, $12.0dS\;m^{-1}$ for red lettuce, $11.3dS\;m^{-1}$ for young radish, and $11.0dS\;m^{-1}$ for garland chrysanthemum. Among the tested 6 summer crops through field experiment and in-situ survey, kale was proved to be a favorable vegetable crop at reclaimed tidal land.

Analysis of Nutrient Cycling Structure of a Korean Beef Cattle Farm Combined with Cropping as Affected by Bedding Material Types (깔개물질의 종류에 따른 한우-경종 결합 농가의 양분순환 구조 분석)

  • Lim, Sang-Sun;Kwak, Jin-Hyeob;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Kim, Yong-Soon;Yun, Bong-Ki;Kim, Sun-Woo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.354-361
    • /
    • 2008
  • In this study, we analyzed nutrient cycling structure of a small farm (cattle of 100 heads and arable lands of 2.5 ha) in Jeonnam province to investigate the effects of nutrients input by the addition of bedding materials (sawdust and rice hull) and nutrients loss before the application to the soils (the period during manure storage in the feedlot and composting process) on nutrient cycling structure. Sawdust and rice hull added as bedding materials increased N by 1.6% and 14.2% and $P_2O_5$ by 3.1% and 27.4%, respectively, relative to the amount of nutrients produced by excretion. This result suggests that the addition of nutrients via bedding materials should be considered for better estimation of nutrient balance. The most significant characteristics of the nutrient cycling structure was loss of mass and nutrients during the storage (21 days) and composting period (90 days). During this period, 78.4% of N and 9.5% of $P_2O_5$ was lost from sawdust compost; meanwhile, the percentages of loss for rice hull compost were 81.6% and 10.3%, respectively. A lower percentage of nutrients loss in sawdust compost than that in rice hull compost was attributed to the relatively slow decomposition rate of organic materials in the sawdust compost which has higher C/N ratio and lignin contents. Therefore, it was concluded that estimation of nutrient balance should be conducted based on nutrient contents in the final compost being applied to the lands rather than the amount of nutrients contained in the livestock excretion. In addition, the effects of bedding materials on nutrient losses should be also taken into account.

Review of Production, Husbandry and Sustainability of Free-range Pig Production Systems

  • Miao, Z.H.;Glatz, P.C.;Ru, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1615-1634
    • /
    • 2004
  • A review was undertaken to obtain information on the sustainability of pig free-range production systems including the management, performance and health of pigs in the system. Modern outdoor rearing systems requires simple portable and flexible housing with low cost fencing. Local pig breeds and outdoor-adapted breeds for certain environment are generally more suitable for free-range systems. Free-range farms should be located in a low rainfall area and paddocks should be relatively flat, with light topsoil overlying free-draining subsoil with the absence of sharp stones that can cause foot damage. Huts or shelters are crucial for protecting pigs from direct sun burn and heat stress, especially when shade from trees and other facilities is not available. Pigs commonly graze on strip pastures and are rotated between paddocks. The zones of thermal comfort for the sow and piglet differ markedly; between 12-22$^{\circ}C$ for the sow and 30-37$^{\circ}C$ for piglets. Offering wallows for free-range pigs meets their behavioural requirements, and also overcomes the effects of high ambient temperatures on feed intake. Pigs can increase their evaporative heat loss via an increase in the proportion of wet skin by using a wallow, or through water drips and spray. Mud from wallows can also coat the skin of pigs, preventing sunburn. Under grazing conditions, it is difficult to control the fibre intake of pigs although a high energy, low fibre diet can be used. In some countries outdoor sows are fitted with nose rings to prevent them from uprooting the grass. This reduces nutrient leaching of the land due to less rooting. In general, free-range pigs have a higher mortality compared to intensively housed pigs. Many factors can contribute to the death of the piglet including crushing, disease, heat stress and poor nutrition. With successful management, free-range pigs can have similar production to door pigs, although the growth rate of the litters is affected by season. Piglets grow quicker indoors during the cold season compared to outdoor systems. Pigs reared outdoors show calmer behaviour. Aggressive interactions during feeding are lower compared to indoor pigs while outdoor sows are more active than indoor sows. Outdoor pigs have a higher parasite burden, which increases the nutrient requirement for maintenance and reduces their feed utilization efficiency. Parasite infections in free-range pigs also risks the image of free-range pork as a clean and safe product. Diseases can be controlled to a certain degree by grazing management. Frequent rotation is required although most farmers are keeping their pigs for a longer period before rotating. The concept of using pasture species to minimise nematode infections in grazing pigs looks promising. Plants that can be grown locally and used as part of the normal feeding regime are most likely to be acceptable to farmers, particularly organic farmers. However, one of the key concerns from the public for free-range pig production system is the impact on the environment. In the past, the pigs were held in the same paddock at a high stocking rate, which resulted in damage to the vegetation, nutrient loading in the soil, nitrate leaching and gas emission. To avoid this, outdoor pigs should be integrated in the cropping pasture system, the stock should be mobile and stocking rate related to the amount of feed given to the animals.

Effects of Seeding Date and Polyethylene Film Mulching on the Yield Potential and Agronomic Characteristics of Proso Millet (Panicum miliaceum L.) in Miryang, Korea (밀양지역에서 기장의 파종시기 및 PE 피복이 생육 및 수량에 미치는 영향)

  • Hyun, Jong-Nae;Hwang, Jae-Bok;Ko, Jee-Yeon;Jung, Ki-Youl;Kim, Kyeong-Hoon;Kim, Kyeong-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.283-289
    • /
    • 2016
  • This study was carried out to identify the optimum seeding dates for selecting a double-cropping system and to assess the effect of polyethylene film mulching on the yield of Proso millet. Seeds of the varieties Hwanggeumgijang and Ibaegchal were sown in Miryang on five different dates: 1st (May 25), 2nd (June 15), 3rd (June 25), 4th (July 5), and 5th (July 15), with and without polyvinyl mulching. The varieties have different characteristics, for example, Hwanggeumgijang is an early-maturing type and more sensitive to temperature, whereas Ibaegchal is a medium-maturing type and more sensitive to the duration for which it is exposed to sunlight. Late-sown Hwanggeumgijang had a short heading date from seeding and required a low accumulated temperature. It also had a shorter period of heading, a shorter culm length and a shorter diameter of stem. In contrast, it had had a higher number of ears $per\;m^2$ although similar ear length and similar 1000-grain weight. The yield potential of Hwanggeumgijang was found to decrease at a late seeding date. In particular, it significantly decreased at the seeding date of July 15. In the case of cultivation with polyvinyl mulching, the period of heading was shorter by 2-4 days and the yield potential was increased by approximately 12-32%. The length and diameter of culm in Ibaegchal were slowly decreased, but the length of ear, the 1000-grain weight and the yield potential were similar for all seeding dates (except July 15) and cultivation with and without mulching. When sown late, the length and diameter of the culm of Ibaegchal very rapidly decreased by the July 15 seeding date. The protein content of Ibaegchal was higher but the amlyose content of Ibaechal was lower compared to Hwanggeumgijang. At late seeding dates, the protein contents of the two varieties increased but the amylose contents were similar.

Soil Chemical Characteristics and Comparison with Infested Status of Nematode(Meloidogyne spp.) in Plastic House Continuously Cultivated Oriental Melon in Songju (성주 지역 시설참외 연작지의 토양특성 및 토양선충 변화)

  • Jun, Han-Sik;Park, Woo-chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • This study was conducted for ten years to evaluate the effective soil management for preventing the infection of root-knot nematode in the field of continuous cultivation with oriental melon under plastic house in Songju area of kyongbuk province. The content of available phosphate, total nitrogen, organic matter, CEC, and exchangeable base in the soil increased with the increase of continuous cultivation year. Especially salt content in the soil increased form 1.2 to 4.55 mS/cm and the yield of oriental melon dramatically decreased with the continuous cultivation year. The number of root-knot nematode was 91 per $300\;cm^3$ of soil in the field of continuous cultivation for 3 years and showed slight damage on the oriental melon, but it was 518 in the field of $4{\sim}6$ years continuous cultivation and showed that 50% of plants died in August, and the yield of late season was less than 50% compared to normal plant. For the seasonal changes in infection rate of root-knot nematode on oriental melon plant, 15% of the normal plant was infected by nematode in February and increased gradually by $10{\sim}20%$ per month, 60% of plants was infected in July. The density of root-knot nematode nymph was 167 in February and increased to 1,625 in August. The infection rate of nematode was 35%, and the number of nematode was about 54 in nursery soil originated from paddy soil, upland soil, and river sand. There were no relationship between the number of nematode and available phosphate or exchangeable base in the soil of plastichouse where oriental melon plants were grown.

  • PDF

Effect of Grass Filter Strips on NO3-N in Runoff from Forage Cropland (사료작물 재배지에서 초지식생대를 이용한 NO3-N 저감효과에 관한 연구)

  • Jo, Nam-Chul;Kim, Won-Ho;Seo, Sung;Yoon, Sei-Hyung;Lee, Ki-Won;Choi, Ki-Choon;Jung, Min-Woong
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • The performance of grass filter strips (GFS) in abating $NO_3$-N concentrations from the forage cropland was tested in an experiment on the 10% slope in Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA) from October 2007 to September 2009. Forage croplands with rye-corn double cropping system applied with chemical fertilizer and livestock manure (LM) were compared in a natural condition. The plots were hydrologically isolated in a randomized block layout of 3 treatments $\times$ 2 factors $\times$ 3 replicates. Main plots consisted of the length of GFS, such as 0 m, 5 m, 10m and 15m. Sub plots consisted of the type of LM, such as chemical fertilizer (CF), cattle manure (CM) and swine manure (SM). Dry matter yields of rye and corn increased significantly in order of CF > CM > SM (p<0.05). Concentrations of $NO_3$-N in surface runoff water were reduced as the length of GFS increased. Especially, GFS with 10 m and 15m reduced $NO_3$-N concentrations significantly compared to that with 0 m and 5 m (p<0.05). The results from this study suggest that GFS improved the removal and trapping of manure nutrients from forage croplands.

Effects of green manures in organic vegetable production (유기농 채소생산을 위한 녹비작물 도입효과)

  • Lee, Sang-Min;Lee, Y.;Yun, H.B.;Sung, J.K.;Lee, Y.H.;Lee, S.B.;Choi, K.J.;Kim, K.H.
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.77-101
    • /
    • 2009
  • Organic farming in Korea has mainly focused on producing vegetables in plastic film house and cereals in paddy field. For high productivity of vegetables and cereals, most Korean farmers have not applied crop rotation in the cropping system. Thus, this study was carried out to evaluate the effects of crop rotation on the yield of red pepper and green onion, the changes in soil fertility and the potential as green manure of rye and hairy vetch. Rye and hairy vetch were cultivated for winter season every year, and directly incorporated into the soil. The yield of red pepper fruits in organic farming using crop rotation (OFCR) decreased 23 to 36% compared with conventional farming system (CFS). Whereas, green onion showed the increased yield of about 13%. In OFCR, total carbon content of soil was higher, however available phosphate content lower than conventional farming. As a result of measuring the bulk density of soil, OFCR and CFS were 1.26 to $1.35Mg/m^3$ and 1.37 to $1.42Mg/m^3$, respectively. Carbon and nitrogen contents of microbial biomass in OFCR were obviously higher compared with the CFS. In the plot cultivated rye for winter season, the weed germination was strongly reduced (about 52 %). Balance of macro nutrient elements, nitrogen and phosphate, in the application of rye and hairy vetch had a minus value. For potassium, the output value was higher than the input one, therefore organic farming under red pepper-rye or hairy vetch systems requires applying additional potassium input. Also, we selected two hairy vetch varieties of cv. Hungvillosa and Ostsaat which can be adapt at Korea climate. In order to estimate a yield of green manures, the weight of shoot and root was measured. The ratio of shoot and root between rye and hairy vetch showed 0.88 and 1.91, respectively. The potential levels of nitrogen, phosphate and potassium which could be supplied from rye were 7.7, 7.8 and 21.9 kg/10a and from hairy vetch were 17.0, 8.6 and 22.9 kg/10a, respectively. So we recommend that cultivating hairy vetch, as a nutrient supplier, and rye, as an amendment to enhance the soil physical property, for winter season be practical method in Korea organic farming system.

  • PDF