• Title/Summary/Keyword: Crop parameters

Search Result 468, Processing Time 0.026 seconds

Comparison between Uncertainties of Cultivar Parameter Estimates Obtained Using Error Calculation Methods for Forage Rice Cultivars (오차 계산 방식에 따른 사료용 벼 품종의 품종모수 추정치 불확도 비교)

  • Young Sang Joh;Shinwoo Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.129-141
    • /
    • 2023
  • Crop models have been used to predict yield under diverse environmental and cultivation conditions, which can be used to support decisions on the management of forage crop. Cultivar parameters are one of required inputs to crop models in order to represent genetic properties for a given forage cultivar. The objectives of this study were to compare calibration and ensemble approaches in order to minimize the uncertainty of crop yield estimates using the SIMPLE crop model. Cultivar parameters were calibrated using Log-likelihood (LL) and Generic Composite Similarity Measure (GCSM) as an objective function for Metropolis-Hastings (MH) algorithm. In total, 20 sets of cultivar parameters were generated for each method. Two types of ensemble approach. First type of ensemble approach was the average of model outputs (Eem), using individual parameters. The second ensemble approach was model output (Epm) of cultivar parameter obtained by averaging given 20 sets of parameters. Comparison was done for each cultivar and for each error calculation methods. 'Jowoo' and 'Yeongwoo', which are forage rice cultivars used in Korea, were subject to the parameter calibration. Yield data were obtained from experiment fields at Suwon, Jeonju, Naju and I ksan. Data for 2013, 2014 and 2016 were used for parameter calibration. For validation, yield data reported from 2016 to 2018 at Suwon was used. Initial calibration indicated that genetic coefficients obtained by LL were distributed in a narrower range than coefficients obtained by GCSM. A two-sample t-test was performed to compare between different methods of ensemble approaches and no significant difference was found between them. Uncertainty of GCSM can be neutralized by adjusting the acceptance probability. The other ensemble method (Epm) indicates that the uncertainty can be reduced with less computation using ensemble approach.

Studies on the Effect of Silicon Nutrition on Plant Growth, Mineral Contents and Endogenous Bioactive Gibberellins of Three Rice Cultivars

  • Jang, Soo-Won;Hamayun, Muhammad;Sohn, Eun-Young;Shin, Dong-Hyun;Kim, Kil-Ung;Lee, In-Jung
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • Silicon is one of the key elements for healthy growth and development in rice crops. We analyzed the effect of silicon(Si) on some growth parameters, plant mineral contents, and bioactive gibberellins in three rice cultivars. Silicon was applied at the rates of 0 kg/0.1ha(control), 40 kg/0.1ha, and 80 kg/0.1ha throughout the course of experiment. Plant growth parameters were enhanced by the application of elevated Si, though plant height and culm length were more favorably affected than the respective dry weights. The plant mineral contents analyzed also increased in treatments where Si was applied without potassium, demonstrating that Si application promotes the absorption of these minerals in rice crops. The endogenous gibberellins measured in our study showed that $GA_1$ is the only bioactive GA form present in rice seedlings. The endogenous $GA_1$ and its precursor $GA_{20}$ contents increased after Si application. However, this increase in endogenous $GA_1$ and $GA_{20}$ contents, and plant growth parameters were different according to the rice cultivars. Our results indicate that Si is a beneficial element in rice nutrition and that different cultivars of Oryza sativa show differential responses to Si nutrition in terms of their growth and development.

  • PDF

Changes of Soil Physical Properties by Manured Sorghum Residues Incorporation

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.379-385
    • /
    • 2013
  • Although sorghum residue production was estimated to be $8{\sim}10Mg\;ha^{-1}$, most sorghum straw was used to be burnt or removed after harvest. This experiment was conducted to evaluate the effect of the incorporation of manured sorghum residues on soil physical properties from 2010 to 2012 in the converted paddy field. Five treatment with 3 replication consisted of control, inorganic fertilizer (NPK), manured residues, sorghum stover and sawdust manure. The incorporation level of organic source was $10Mg\;ha^{-1}$ without inorganic fertilizer NPK. The investigated physical parameters were bulk density (BD), porosity, water stability aggregate (WSA), water infiltration rater (WIR), penetration resistance (PR) and soil water retention characteristics (WRC) with soil depth. The incorporation of manured sorghum residues improved WIR significantly over inorganic fertilizer (NPK), sorghum residues and sawdust manure. The BD by incorporating with manured residues on sorghum was reduced significantly with crop residue over plot of NPK and sawdust. Significant increase in WSA was observed with stubble incorporation alone or manured sorghum residues. Soil WRC were significantly enhanced with manured sorghum residue incorporated without NPK. The average PR at 0~15 cm was 0.54 MPa for manured sorghum residues. For sawdust manure plot it was 0.42 MPa, for Sawdust manure plot 0.39 MPa and for NPK plot 0.54 MPa.

Application Method of Unmanned Aerial Vehicle for Crop Monitoring in Korea (국내 작황 모니터링을 위한 무인항공기 적용방안)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.829-846
    • /
    • 2018
  • Crop monitoring can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. But, traditional monitoring has used field measurements involving destructive sampling and laboratory analysis, which is costly and time consuming. Unmanned Aerial vehicle (UAV) could be effectively applied in a field of crop monitoring for estimation of cultivated area, growth parameters, growth disorder and yield, because it can acquire high-resolution images quickly and repeatedly. And lower flight altitude compared with satellite, UAV can obtain high quality images even in cloudy weather. This study examined the possibility of utilizing UAV in the field of crop monitoring and was to suggest the application method for production of crop status information from UAV.

Effect of Biofertilizers on Vegetative Growth of Okra

  • Ashrafuzzaman, M.;Nuruzzaman, M.;Islam, M.Zahurul;Islam, M.Rafiqul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • An experiment was carried out at the Field Laboratory of the Department of Crop Botany, Bangladesh Agricultural University, Mymensingh from March to July, 2001 to investigate the effect of biofertilizers on morpho-physiological characters of okra. The experiment was laid out in a randomized complete block design with four replications. There were nine treatments such as $\textrm{T}_0$ (control), $\textrm{T}_1$ (Azotobacter biofertilizer), $\textrm{T}_2$ (Azospirillum biofertilizer), $\textrm{T}_3$ (Azotobacter+Azospirillum biofertilizers), $\textrm{T}_4$ (Azotobacter+Cowdung 5 ton $\textrm{ha}^{-1}$), $\textrm{T}_5$ (Azospirillum+Cowdung 5 ton $\textrm{ha}^{-1}$), $\textrm{T}_6$(Azotobacter+Azospirillum+Cowdung 5 ton $\textrm{ha}^{-1}$), $\textrm{T}_7$ (Cowdung 5 ton $\textrm{ha}^{-1}$) and $\textrm{T}_8$ (60% Nitrogen). The experimental results revealed that significant variations exist among the treatments regarding morphological characters e.g. plant height, number of leaves/plant, stem base diameter, tap root length, and physiological characters like, root dry weight, leaf area index and crop growth rate. Number of leaves/plant, stem base diameter, root length, root dry weight, leaf area index and crop growth rate were found higher in $\textrm{T}_4$, $\textrm{T}_5$, $\textrm{T}_6$ and $\textrm{T}_8$ than the others. In all the parameters, $\textrm{T}_8$ gave the similar result with biofertilizers in combination with cowdung treatments and $\textrm{T}_7$ showed identical with $\textrm{T}_0$ (control). Biofertilizer treatments had insignificant effect on 1000-seed weight(g). Experimental results mentioned above revealed that morpho-physioligical characters of okra could be modified by the application of biofertilizer+cowdung. However, biofertilizers+Cowdung treatments were comparable to $\textrm{T}_8$(60% Nitrogen) in this study. This suggests that $\textrm{T}_4$ or $\textrm{T}_6$ or $\textrm{T}_5$ were more benificial in environmentally friendly okra cultivation and may be used as an alternative of inorganic nitrogen by saving cost of production and sustaining productivity.

Effects of Enhanced Light Transmission Rate During the Early Growth Stage on Plant Growth, Photosynthetic Ability and Disease Incidence of Above Ground in Panax ginseng (생육 초기에 투광량 증가가 인삼생육 및 지상부 병 발생에 미치는 영향)

  • Mo, Hwang Sung;Jang, In Bae;Yu, Jin;Park, Hong Woo;Park, Kee Choon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.4
    • /
    • pp.284-291
    • /
    • 2015
  • This study was performed to investigate the effects of enhanced light transmission on plant growth, photosynthetic ability, and disease tolerance to leaf blight, anthracnose in ginseng (Panax ginseng C. A. Meyer, Araliacease family) during the early growth stage (April to June). The photosynthetic ratio, stomatal conductance, and stem diameter of plants grown under a shade net with 15% light transmission rate showed an increasing trend compared to the control plants (5% light transmission rate) although the growth of the aerial parts were not influenced significantly. Plant height, stem length, and leaf length of treated plants were not significantly different from those of the control plants. Root parameters, such as root length, diameter, and weight of treated plants increased significantly compared to the control. Yield performance ($187.4kg{\cdot}10a^{-1}$) of treated plants was 55.5% higher than that of the control ($150.4kg{\cdot}10a^{-1}$). Additionally, disease severity scores of treated plants were lower than those of the control plants, revealing higher survival rates. To retain high yield potential and enhance the level of disease tolerance in ginseng, we suggest the increase of light transmission rate during the early growth stage.

Physiological Response to Salinity Stress of Japonica/Indica Lines Tolerant to Salt at Seedling Stage

  • Ko, Jong-Cheol;Lee, Kyu-Seong;Kim, Ki-Young;Choi, Weon-Young;Kim, Bo-Kyung;Shin, Woon-Cheol;Ko, Jae-Kwon;Yum, Song-Joong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.391-398
    • /
    • 2011
  • Physiological responses to salinity stress were evaluated in six rice genotypes differing in their tolerance to salinity at the seedling stage. Susceptible genotypes ('Dongjingbyeo', 'Hwayeongbyeo', and 'IR29') showed salt injury symptoms (mean 8.8) and higher visual score under salt stress than that of tolerant ones ('Pokkali', 'IR74009', and 'IR73571'). As salinity affects growth and physiological parameters, the six genotypes thus showed significant reduction because of salt stress. Tolerant Japonica/Indica bred lines ('IR74009', 'IR73571') showed lower reduction, 33.9%, 34.5%, and 50%, respectively, in plant seedling height, dry shoot weight and dry root weight than those of the susceptible Japonica varieties ('Dongjingbyeo', 'Hwayeongbyeo'), and the highest reduction under salt stress was observed in dry root weight, followed by dry shoot weight and seedling height, respectively. Shoot $Na^+$ concentration of IR74099 and IR73571 was lower than that of the susceptible varieties, 'Dongjinbyeo' and 'Hwayeongbyeo'. There were no significant differences among genotypes in root $Na^+$ concentration. Shoot $K^+$ concentration showed a reverse tendency compared to shoot $Na^+$ concentration. IR74009 and IR73571 had considerably lower ratio compared to 'Dongjinbyeo' and 'Hwayeongbyeo' in $Na^+/K^+$ ratio of their shoot and was not different the tolerant check, 'Pokkali'.

Optimization of KOH pretreatment conditions from Miscanthus using high temperature and extrusion system (고온 압출식 반응시스템을 이용한 억새 바이오매스의 KOH 전처리조건 최적화)

  • Cha, Young-Lok;Park, Sung-Min;Moon, Youn-Ho;Kim, Kwang-Soo;Lee, Ji-Eun;Kwon, Da-Eun;Kang, Yong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1243-1252
    • /
    • 2019
  • The purpose of this study is to investigate the optimum conditions of biomass pretreatment with potassium hydroxide (KOH) for efficient utilization of cellulose, hemicellulose and lignin from Miscanthus. The optimization of variables was performed by response surface methodology (RSM). The variation ranges of the parameters for the RSM were potassium hydroxide 0.2~0.8 M, reaction temperature 110~190℃ and reaction time 10~90 min. The optimum conditions of alkali pretreatment from Miscanthus were determined as follows: concentration of KOH 0.47 M, reaction temperature 134℃ and reaction time 65 min. At the optimum conditions, the yield of cellulose from the solid fraction after pretreatment was predicted to be 95% by model prediction. Finally, 66.1 ± 1.1% of cellulose were obtained by verification experiment under the optimum conditions. The order contents of solid extraction were hemicellulose 26.4 ± 0.4%, lignin 3.7 ± 0.1% and ash 0.5 ± 0.04%. The yield of ethanol concentration of 96% was obtained using separated saccharification and fermentation.

On-the-go Nitrogen Sensing and Fertilizer Control for Site-specific Crop Management

  • Kim, Y.;Reid, J.F.;Han, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 2006
  • In-field site-specific nitrogen (N) management increases crop yield, reduces N application to minimize the risk of nitrate contamination of ground water, and thus reduces farming cost. Real-time N sensing and fertilization is required for efficient N management. An 'on-the-go' site-specific N management system was developed and evaluated for the supplemental N application to com (Zea mays L.). This real-time N sensing and fertilization system monitored and assessed N fertilization needs using a vision-based spectral sensor and controlled the appropriate variable N rate according to N deficiency level estimated from spectral signature of crop canopies. Sensor inputs included ambient illumination, camera parameters, and image histogram of three spectral regions (red, green, and near-infrared). The real-time sensor-based supplemental N treatment improved crop N status and increased yield over most plots. The largest yield increase was achieved in plots with low initial N treatment combined with supplemental variable-rate application. Yield data for plots where N was applied the latest in the season resulted in a reduced impact on supplemental N. For plots with no supplemental N application, yield increased gradually with initial N treatment, but any N application more than 101 kg/ha had minimal impact on yield.

  • PDF

Characteristics of UAV Aerial Images for Monitoring of Highland Kimchi Cabbage

  • Lee, Kyung-Do;Park, Chan-Won;So, Kyu-Ho;Kim, Ki-Deog;Na, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.162-178
    • /
    • 2017
  • Remote sensing can be used to provide information about the monitoring of crop growth condition. Recently Unmanned Aerial Vehicle (UAV) technology offers new opportunities for assessing crop growth condition using UAV imagery. The objective of this study was to assess weather UAV aerial images are suitable for the monitoring of highland Kimchi cabbage. This study was conducted using a fixed-wing UAV (Model : Ebee) with Cannon S110, IXUS/ELPH camera during farming season from 2015 to 2016 in the main production area of highland Kimchi cabbage, Anbandegi, Maebongsan, and Gwinemi. The Normalized Difference Vegetation Index (NDVI) by using UAV images was stable and suitable for monitoring of Kimchi cabbage situation. There were strong relationships between UAV NDVI and the growth parameters (the plant height and leaf width) ($R^2{\geq}0.94$). The tendency of UAV NDVI according to Kimchi cabbage growth was similar in the same area for two years (2015~2016). It means that if UAV image may be collected several years, UAV images could be used for estimation of the stage of growth and situation of Kimchi cabbage cultivation.