• Title/Summary/Keyword: Crop land

Search Result 780, Processing Time 0.029 seconds

Performance Analysis of Cost Effective Portable Solar Photovoltaic Water Pumping System

  • Parmar, Richa;Banerjee, Chandan;Tripathi, Arun K.
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • Solar water pumping system (SWPS) is reliable and beneficial for Indian farmers in irrigation and crop production without accessing utility. The capability of easy installation and deployment, makes it an attractive option in remote areas without grid access. The selection of portable solar based pumps is pertaining to its longer life and economic viability due to lower running cost. The work presented in this manuscript intends to demonstrate performance analysis of portable systems. Consequent investigation reveals PSWS as the emerging option for rural household and marginal farmers. This can be attributed to the fact that, a considerable portion (around 45.7%) of the country's land is farmland and irrigation options are yet to reach farmers who entirely rely on rain water at present for harvesting of the crops. According to census 2010-2011 tube wells are the main source for irrigation amongst all other sources followed by canals. Out of the total 64.57-million-hectare net irrigation area, 48.16% is accounted by small and marginal holdings, 43.77% by semi-medium and medium holdings, and 8.07% by large holdings. As per 2015-16 census data, nearly 100 million farming households would struggle to make ends meet. The work included in this manuscript, presents the performance of different commercial brands and different technologies of DC surface solar water micro pumping systems have been studied (specifically, the centrifugal and reciprocating type pumps have been considered for analysis). The performance of the pumping systems has been analyzed and data is evaluated in terms of quantity of water impelled for specific head. The reciprocating pump has been observed to deliver the best system efficiency.

Water Budget Assessment for Soybean Grown in Paddy Fields Converted to Uplands Using APEX Model (APEX 모델을 이용한 콩 재배 밭 전환 논의 물수지 특성 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Yeob, So-Jin;Kim, Myung-Hyun;Kim, Min-Kyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.55-64
    • /
    • 2021
  • The expansion of upland crop cultivation in rice paddy fields is recommended by the Korean government to solve the problem of falling rice price and reduction of rice farmer's income due to oversupply of rice. However, water use efficiency is significantly influenced by the land use change from paddy field to upland. Therefore, this study aimed to evaluate the water budget of soybean grown in using APEX (Agricultural Policy and Environmental eXtender) model. The amount of runoff was measured in a test bed located in Iksan, Jeollabu-do and used to calibrate and validate the simulated runoff by APEX model. From 2019 to 2020, the water budget of soybean grown in uplands were estimated and compared with the one grown in paddy fields. The calibration result of AP EX model for runoff showed that R2 (Coefficient of determination) and NSE (Nash-Sutcliffe efficiency) were 0.90 and 0.89, respectively. In addition, the validated results of R2 and NSE were 0.81 and 0.62, respectively. The comparative study of each component in water budget showed that the amounts of evapotranspiration and percolation estimated by APEX model were 549.1 mm and 375.8mm, respectively. The direct runoff amount from upland was 390.1 mm, which was less than that from paddy fields. The average amount of irrigation water was 28.7 mm, which was very small compared to the one from paddy fields.

Proximate Analysis of Ipomea Batatass L. Grown in Two Different Zones in Imo State

  • meoka, N.U.;Ogbonnaya, C.I.;Ohazurike, N.C.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • Proximate analysis of Ipomea batatass L. grown in two different locations in Imo State were investigated. Standard soil analytical method was used to determine the physiochemical contents of the two soil sample collected from Mgbidi and Orji Ipomea batatass L. farm land. The soil sand from Ipomea batatass L. root in Orji farm recorded highest percentage value of 75.00% compared to the soil sand Ipomea batatass L. root in Mgbidi farm with 27.00% value. The percentage value of silt was different as the soil Ipomea batatass L. root in Mgbidi farm had high value of 29.40% while soil silt of Ipomea batatass L. root in Orji farm had 13.40%. The soil clay, pH, Phosphorus and Nitrogen from Ipomea batatass L. root in Mgbidi farm recorded highest percentage value of 43.60%, 5.7, 23.20 and 0.35 compared to the soil sand Ipomea root in Orji farm with 11.60%, 5.4, 16.70 and 0.09 value respectively. Ca, Mg, K, and Na analyzed followed the same trend as the soil from Ipomea root in Mgbidi farm had high percentage value of Ca (10.00), Mg (1.60), K (0.54) and Na (0.43) respectively. The systematic study of physiochemical of the Ipomea soils could help in understanding the nutritional composition, the basic characteristics of the soils and the constraints associated with the management of the soils from the two locations.

Sustainability and Challenges of Climate Change Mitigation through Urban Reforestation - A Review

  • Ogunbode, Timothy O.;Asifat, Janet T.
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • The realities of Climate change and its untold implications on the livelihood of man are no longer new worldwide. In attempts to subdue the negative implications of Climate change scenario globally, several measures have being suggested and being put in place. One of such measures is urban reforestation especially in the developing nations where forest resources have extremely and uncontrollably exploited. Most of cities in developing nations are almost devoid of regularly maintained trees for whatever purpose. Thus, the enormous roles which urban tree performs are lacked in most cities. In order to subdue excessive heat in cities arising from exposure of urban land areas urban reforestation exercise needs to be embarked upon. The investigation was carried out through desk studies and review of relevant publications to examine what it entails to have a sustainable reforestation programme in cities. The study revealed that several factors need to be taken into consideration if sustainable urban reforestation will be achieved, especially in developing countries. These factors include urban soil nutrients status investigation, appropriate tree type study, public perception about the tree types, relevant legal instrument to achieve successful reforestation exercise in cities among others were found to be salient to this exercise. Urban reforestation has enormous potentials to subdue Climate change consequences, including urban renewal if adequate provision is made for its sustainability, especially in developing countries. To ensure this is realized it is recommended that relevant ministry/agency could be put in charge for the maintaining, cutting and replanting of urban tree and all that are involved in urban tree sustainability.

Effect of soil physical properties on nitrogen leaching during sesame (Sesamum indicum L.) cultivation under lysimeter conditions

  • Chan-Wook Lee;Jung-Hun Ok;Yang-Min Kim;Yo-Sung Song;Hye-Jin Park;Byung-Keun Hyun;Ye-Jin Lee;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.379-387
    • /
    • 2022
  • A large amount of the mineral nitrogen is necessary for crop growth. With the use of nitrogen fertilizers, agricultural yield has increased during the last few decades. However, at the same time, nitrate from the cultivated land can be a source of environmental pollution, especially in water systems. For nitrogen management, it is necessary to analyze the pattern of nitrogen movement in soil. In this study, nitrogen leaching in upland soils was evaluated using undisturbed lysimeters with different soil textures during sesame cultivation. The soil texture of the lysimeters was clay loam (Songjung series) and sandy loam (Sangju series) soils. Sesame was cultivated from May 25 to August 24 in 2020. The standard amount of NPK fertilizer (N-P2O5-K2O = 2.9-3.1-3.2 kg·10 a-1) was applied before sowing. The amount of nitrogen leaching was calculated by multiplying the nitrogen (NO3-N + NH4-N) concentration and the amount of water drained below 1.5 m soil depth. The water was drained through percolation into macropores in the clay loam lysimeter. In contrast, in the sandy loam lysimeter, water drained more slowly than in the clay loam lysimeter. There was a slight difference in the total amount of leachate during the cultivation period, but the amount of nitrogen leaching was high in sandy loam soil. During the sesame cultivation period, the amount of nitrogen leaching from clay soil was 5.64 kg·10 a-1, and 10.70 kg·10 a-1 for sandy soil. We found that there was a difference in leaching depending on the soil physical characteristics. Therefore, it is necessary to consider the characteristics of soil to evaluate the leaching of nitrogen.

Development of a soil total carbon prediction model using a multiple regression analysis method

  • Jun-Hyuk, Yoo;Jwa-Kyoung, Sung;Deogratius, Luyima;Taek-Keun, Oh;Jaesung, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.891-897
    • /
    • 2021
  • There is a need for a technology that can quickly and accurately analyze soil carbon contents. Existing soil carbon analysis methods are cumbersome in terms of professional manpower requirements, time, and cost. It is against this background that the present study leverages the soil physical properties of color and water content levels to develop a model capable of predicting the carbon content of soil sample. To predict the total carbon content of soil, the RGB values, water content of the soil, and lux levels were analyzed and used as statistical data. However, when R, G, and B with high correlations were all included in a multiple regression analysis as independent variables, a high level of multicollinearity was noted and G was thus excluded from the model. The estimates showed that the estimation coefficients for all independent variables were statistically significant at a significance level of 1%. The elastic values of R and B for the soil carbon content, which are of major interest in this study, were -2.90 and 1.47, respectively, showing that a 1% increase in the R value was correlated with a 2.90% decrease in the carbon content, whereas a 1% increase in the B value tallied with a 1.47% increase in the carbon content. Coefficient of determination (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) methods were used for regression verification, and calibration samples showed higher accuracy than the validation samples in terms of R2 and MAPE.

Evaluation of Pollutant Removal efficiency for Watershed Scale According to Application of BMPs by Crop Land (유역단위 경작지별 비점오염저감시설 저감 효율 평가)

  • Lee, Gwanjae;Lee, Seoro;Yang, Dongseok;Lee, Jimin;Lim, Kyoung Jae;Jang, Won Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.404-404
    • /
    • 2021
  • 기후변화에 따른 물 순환과정의 변화는 유역내 강우패턴 및 강우강도, 유출 특성에 큰 영향을 미친다. 유역내 강우패턴 및 강우강도 등 물 순환과정의 변화는 강우에 의한 유출과 밀접한 관련이 있는 비점오염원에 중대한 영향을 미친다. 특히, 고랭지밭에 밀집되어 있어 강우에 따른 토사로 인한 탁수가 빈번하게 문제가 되고 있는 소양호 유역은 비점오염원관리지역으로 지정되어 탁수를 저감하기 위해 많은 노력을 기울이고 있는 실정이다. 이러한 노력들 중 환경부에서는 개별 경작지마다 BMPs(Best Management Practices)를 적용하여 강우에 의한 탁수를 저감하고자 하였으며, 앞으로도 지속적으로 설치할 계획에 있다. 그러나 이러한 비점오염저감시설을 적용하였을 때의 저감효율은 밭의 면적이나 경사도, 경사장 등 다양한 조건을 고려해야 하는 어려움이 있어, 이에 대한 연구는 매우 제한적으로 이루어져 왔다. 이에 따라, 각 경작지에 적용된 개별 비점오염저감시설이 유역 말단에 미치는 영향에 대한 연구 역시 미비한 실정이다. 그러나 비점오염저감대책 및 계획은 유역 말단을 기준으로 하는 경우가 많고, 유량 및 수질에 대한 모니터링 자료 역시 유역 말단에 위치하기 때문에 개별 비점오염저감시설이 유역 말단에 미치는 영향에 대한 연구는 매우 중요하다고 할 수 있다. 따라서 본 연구에서는 유역단위 평가모델 중 하나인 SWAT을 이용하여 각 경작지 별로 실측 경사장 및 경사도, 개별 비점오염저감시설을 적용하였으며, 개별 비점오염저감시설이 유역말단에 미치는 영향을 평가하였다.

  • PDF

Identification of Metabolites Derived from Streptomyces sp. S20-465 That Are Effective in Controlling Cucumber Anthracnose (오이 탄저병 방제에 효과적인 Streptomyces sp. S20-465 유래 대사물질 규명)

  • Jiwon Kim;Mee Kyung Sang
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.189-193
    • /
    • 2024
  • Cucumber (Cucumis sativus L.) is substantial economic importance in South Korea, with its cultivation occupying a significant portion of agricultural land. However, sustainable cucumber production requires effective management of various diseases affecting the crop yield. In this study, we explored the potential of Streptomyces sp. S20-465-derived metabolites in controlling cucumber anthracnose disease caused by Colletotrichum orbiculare. This study identified 4-hydroxy-4-methyl-2-pentanone as a potent antifungal compound present in the n-hexane extract of Streptomyces sp. S20-465 culture filtrate. This compound exhibited significant the disease reduction, demonstrating their potential as control agents. Our findings suggest that Streptomyces sp. S20-465-derived metabolite could serve as an effective tool for managing cucumber anthracnose, offering a sustainable approach to enhancing cucumber production. Further research into the application and efficacy of these compounds in agricultural system will be conducted.

Studies on the Improvement of the Cropping System (I) (작부체계(作付體系) 개선(改善)에 관(關)한 조사연구(調査硏究)(I))

  • Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.61-73
    • /
    • 1983
  • This study was conducted to obtain fundamental informations on the improvement of cropping system to increase in land utilization rate and crop production. In order to group the characteristics of areas, Chungnam province was classified into 4 classes: Suburb (Daedeog Gun, Cheonwon Gun), Plain (Nonsan Gun, Dangjin Gun) Coastal (Seosan Gun, Boryeong Gun) and Hilly region (Gongju Gun, Cheongyang Gun). 100 farm households were sampled from each region, and cropping system and utilization state of paddy and upland in 1982 were surveyed. The results obtained were summarized as follows: 1. Average utilization rate of upland was 161.9 % The utilization rate of upland at plain was highest (188.9 %), and that at suburb showed lowest value (152.0%). 2. Number of crops cultivated at upland was 32 kinds. Among the rate of planting area of each crop. soybean showed highest rate of 18.8%, barley 15.4%, red-pepper 13.1% and chinese' cabbage 10.1% respectively, but the red pepper showed highest rate of planting area at suburb, the barley at hilly region and the soybean at plain and coastal region. 3. Average utilization rate of paddy was 115.6% and the utilization rate of paddy at suburb showed the highest value (140.0%) and that at coastal region the lowest value (108.2%). 4. 12 kinds of crops were cultivated at paddy before or after rice cultivation. Among the crops cultivated at paddy before or after rice cultivation, barley showed the highest area rate (5.0%) of cultivation and strawberry the next but the strawberry showed the highest area rate of cultivation at suburb and barley at other regions. 5. The cropping systems at upland were divided into single cropping and double cropping. Types of double cropping at upland were classified into 38 types by the combinations of crops. Among the types of double cropping, the rate of cultivation area of soybean after barley combination was 35.0%, but at suburb the rate of this type of cropping system was low and the double cropping of vegetable combinations showed high rate. 6. Types of double cropping at paddy were classified into 6 types. As a whole, double cropping of barley after rice combination showed highest rate of cultivation area (42.8%) among crop combinations but at suburb, the area rate of this type cropping was low and cultivation of fruit vegetable after rice showed highest rate. The area rate of post - cropping to rice was 76.3% of whole double cropping area at paddy and significantly higher than the rate of precropping to rice. 7. Some kinds of crop combinations were consisted of same family or closely related crops and the characteristics of the crop rotation between those crops are almost same. The area cultivated those unreasonable crop combinations were 19.09 ha. 8. At upland, planting area of the cereal crops, vegetale crops and industrial crops crops and industrial crops was 88.92ha, 93.70ha and 21.80ha respectively. The Planting area of cereal crops was significantly less than that of vegetable crops. 9. Most of all the research reports on the cropping system from 1910 to 1980 were about the post cropping after rice harvest. The objectives of researches could be classified into 14 kinds and the important objectives of researches were the planting time, the amounting of manuring, the quantity of seeding, the transplanting time, the ridging method, the sowing method and the variety test.

  • PDF

Assessment of Salt Damage for Upland-Crops in Dae-Ho Reclaimed Soil (대호 간척지 토양의 염농도별 밭작물의 염해 평가)

  • Lee, Seung-Heon;Yoo, Sun-Ho;Seol, Su-Il;An, Yeoul;Jung, Yeong-Sang;Lee, Sang-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.358-363
    • /
    • 2000
  • This study was carried out to obtain the basic data for selecting the applicable crops in reclaimed land during desalinization period. A pot experiment was conducted with 5 different electrical conductivities of the saturated extracts $(ECe\;1,\;3,\;9,\;14,\;and\;16\;dS{\cdot}m^{-1})$ of soils taken from the Dae-Ho reclaimed tidal lands. Eight crops (Chinese cabbage, radish, tomato, red pepper, buckwheat, soybean, sesame, and green perilla) were grown for 37days. Plant height and number of leaves were surveyed on 2 and 4 weeks after seeding, and on harvest time (5 weeks). After harvest, dry weights of harvested crops were measured and soil chemical properties were analyzed. Emergence rates of crops were comparatively high except sesame. For sesame, there was no emergence at ECe over $3\;dS{\cdot}m^{-1}$. Growth and dry weight decreased significantly as increasing ECe. The ECe which decreased 50% of dry weight index were $14.2\;dS{\cdot}m^{-1}$ for radish, $11.4\;dS{\cdot}m^{-1}$ for Chinese cabbage, $10.2\;dS{\cdot}m^{-1}$ for red pepper, $8.9\;dS{\cdot}m^{-1}$ for buckwheat and green perilla, $8.6\;dS{\cdot}m^{-1}$ for soybean, and $8.9\;dS{\cdot}m^{-1}$ for tomato. At higher ECe that start the growth inhibition, increasing $1\;dS{\cdot}m^{-1}$ in ECe, 7.7, 6.5, 5.9, 5.6, 5.2, and 4.9% of dry weight decreased for buckwheat, green perilla, Chinese cabbage, radish, soybean, and tomato (red pepper), respectively. The critical value of ECe for crop survival except sesame was $15.4\;{\sim}\;23.1\;dS{\cdot}m^{-1}$.

  • PDF