• Title/Summary/Keyword: Crop Model

Search Result 945, Processing Time 0.036 seconds

The Effect of Crop Diversification on Agricultural Income (작목다각화가 농업소득에 미치는 영향)

  • Choi, Do Hyeong;Choi, Eunji;Lee, Seong Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • The purpose of this study is to analyze the effect of crop diversification on farm households' agricultural income. Abundant literature have explored the determinants and efficient strategies for crop diversification. Yet, there is a paucity of research studies that empirically test the effectiveness of crop diversification as a profitable farm management strategy. Utilizing the 2015 Agricultural Census, this study adopts a quasi-experimental research design to compare the outcomes between farm households that opted for crop diversification and farm households that did not engage in such a strategy. In doing so, this study applies the Heckman Selection Model and the decomposition technique to address the problem of selection bias and to identify the causal effect. Our empirical results show that farms that implement diversification are more likely to earn higher agricultural income than non-diversified farms, although the difference would not be much substantial. This study concludes with several policy proposals to stabilize agricultural income in conjunction with crop diversification.

Growth Monitoring for Soybean Smart Water Management and Production Prediction Model Development

  • JinSil Choi;Kyunam An;Hosub An;Shin-Young Park;Dong-Kwan Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.58-58
    • /
    • 2022
  • With the development of advanced technology, automation of agricultural work is spreading. In association with the 4th industrial revolution-based technology, research on field smart farm technology is being actively conducted. A state-of-the-art unmanned automated agricultural production demonstration complex was established in Naju-si, Jeollanam-do. For the operation of the demonstration area platform, it is necessary to build a sophisticated, advanced, and intelligent field smart farming model. For the operation of the unmanned automated agricultural production demonstration area platform, we are building data on the growth of soybean for smart cultivated crops and conducting research to determine the optimal time for agricultural work. In order to operate an unmanned automation platform, data is collected to discover digital factors for water management immediately after planting, water management during the growing season, and determination of harvest time. A subsurface drip irrigation system was established for smart water management. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. Vegetation indices were collected using drones to find key factors in soybean production prediction. In addition, major growth characteristics such as stem length, number of branches, number of nodes on the main stem, leaf area index, and dry weight were investigated. By discovering digital factors for effective decision-making through data construction, it is expected to greatly enhance the efficiency of the operation of the unmanned automated agricultural production demonstration area.

  • PDF

Developing a Model for Estimating Leaf Temperature of Cnidium officinale Makino Based on Black Globe Temperature (흑구온도를 이용한 천궁 엽온 예측 모델 개발)

  • Seo, Young Jin;Nam, Hyo Hoon;Jang, Won Cheol;Lee, Bu Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Background: The leaf temperature ($T_{LEAF}$) is one of the most important physical parameters governing water and carbon flux, including evapotranspiration, photosynthesis and respiration. Cnidium officinale is one of the important folk medicines for counteracting a variety of diseases, and is particularly used as a traditional medicinal crop in the treatment of female genital inflammatory diseases. In this study, we developed a model to estimate $T_{Leaf}$ of Cnidium officinale Makino based on black globe temperature ($T_{BGT}$). Methods and Results: This study was performed from April to July 2018 in field characterized by a valley and alluvial fan topography. Databases of $T_{LEAF}$ were curated by infrared thermometry, along with meteorological instruments, including a thermometer, a pyranometer, and an anemometer. Linear regression analysis and Student's t-test were performed to evaluate the performance of the model and significance of the parameters. The correlation coefficient between observed $T_{LEAF}$ and calculated $T_{BGT}$ obtained using an equation, developed to predict $T_{LEAF}$ based on $T_{BGT}$ was very high ($r^2=0.9500$, p < 0.0001). There was a positive relationship between $T_{BGT}$ and solar radiation ($r^2=0.8556$, p < 0.0001), but a negative relationship between $T_{BGT}$ and wind speed ($r^2=0.9707$, p < 0.0001). These results imply that heat exchange in leaves seems to be mainly controlled by solar radiation and wind speed. The correlation coefficient between actual and estimated $T_{BGT}$ was 0.9710 (p < 0.0001). Conclusions: The developed model can be used to accurately estimate the $T_{Leaf}$ of Cnidium officinale Makino and has the potential to become a practical alternative to assessing cold and heat stress.

Calibration of crop growth model CERES-MAIZE with yield trial data (지역적응 시험 자료를 활용한 옥수수 작물모형 CERES-MAIZE의 품종모수 추정시의 문제점)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.277-283
    • /
    • 2018
  • The crop growth model has been widely used for climate change impact assessment. Crop growth model require genetic coefficients for simulating growth and yield. In order to determine the genetic coefficients, regional growth monitoring data or yield trial data of crops has been used to calibrate crop growth model. The aim of this study is to verify that yield trial data of corn is appropriate to calibrate genetic coefficients of CERES-MAIZE. Field experiment sites were Suwon, Jinju, Daegu and Changwon. The distance from the weather station to the experimental field were from 1.3km to 27km. Genetic coefficients calibrated by yield trial data showed good performance in silking day. The genetic coefficients associated with silking are determined only by temperature. In CERES-MAIZE model, precipitation or irrigation does not have a significant effect on phenology related genetic coefficients. Although the effective distance of the temperature could vary depending on the terrain, reliable genetic coefficients were obtained in this study even when a weather observation site was within a maximum of 27 km. Therefore, it is possible to estimate the genetic coefficients by yield trial data in study area. However, the yield-related genetic coefficients did not show good results. These results were caused by simulating the water stress without accurate information on irrigation or rainfall. The yield trial reports have not had accurate information on irrigation timing and volume. In order to obtain significant precipitation data, the distance between experimental field and weather station should be closer to that of the temperature measurement. However, the experimental fields in this study was not close enough to the weather station. Therefore, When determining the genetic coefficients of regional corn yield trial data, it may be appropriate to calibrate only genetic coefficients related to phenology.

Estimation of Corn and Soybean Yields Based on MODIS Data and CASA Model in Iowa and Illinois, USA

  • Na, Sangil;Hong, Sukyoung;Kim, Yihyun;Lee, Kyoungdo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.92-99
    • /
    • 2014
  • The crop growing conditions make accurate predictions of yield ahead of harvest time difficult. Such predictions are needed by the government to estimate, ahead of time, the amount of crop required to be imported to meet the expected domestic shortfall. Corn and soybean especially are widely cultivated throughout the world and a staple food in many regions of the world. On the other hand, the CASA (Carnegie-Ames-Stanford Approach) model is a process-based model to estimate the land plant NPP (Net Primary Productivity) based on the plant growing mechanism. In this paper, therefore, a methodology for the estimation of corn/soybean yield ahead of harvest time is developed specifically for the growing conditions particular to Iowa and Illinois. The method is based on CASA model using MODIS data, and uses Net Primary Productivity (NPP) to predict corn/soybean yield. As a result, NPP at DOY 217 (in Illinois) and DOY 241 (in Iowa) tend to have high correlation with corn/soybean yields. The corn/soybean yields of Iowa in 2013 was estimated to be 11.24/3.55 ton/ha and Illinois was estimated to be 10.09/3.06 ton/ha. Errors were 6.06/17.58% and -10.64/-7.07%, respectively, compared with the yield forecast of the USDA. Crop yield distributions in 2013 were presented to show spatial variability in the state. This leads to the conclusion that NPP changes in the crop field were well reflected crop yield in this study.

Classification of Summer Paddy and Winter Cropping Fields Using Sentinel-2 Images (Sentinel-2 위성영상을 이용한 하계 논벼와 동계작물 재배 필지 분류 및 정확도 평가)

  • Hong, Joo-Pyo;Jang, Seong-Ju;Park, Jin-Seok;Shin, Hyung-Jin;Song, In-Hong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.51-63
    • /
    • 2022
  • Up-to-date statistics of crop cultivation status is essential for farm land management planning and the advancement in remote sensing technology allows for rapid update of farming information. The objective of this study was to develop a classification model of rice paddy or winter crop fields based on NDWI, NDVI, and HSV indices using Sentinel-2 satellite images. The 18 locations in central Korea were selected as target areas and photographed once for each during summer and winter with a eBee drone to identify ground truth crop cultivation. The NDWI was used to classify summer paddy fields, while the NDVI and HSV were used and compared in identification of winter crop cultivation areas. The summer paddy field classification with the criteria of -0.195

Quantitative Assessment of the Quality of Regional Adaptation Trial Data for Crop Model Improvement (작물 모형 개선을 위한 지역적응시험 자료의 정량적 품질 평가)

  • Hyun, Shinwoo;Seo, Bo Hun;Lee, Sukin;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.194-204
    • /
    • 2020
  • Cultivar parameters, which are key inputs to a crop growth model, have been estimated using observation data in good quality. Observation data with high quality often require considerable labor and cost, which makes it challenging to gather a large quantity of data for calibration of cultivar parameters. Alternatively, data in sufficient quantity can be collected from the reports on the evaluation of cultivars by region although these data are of questionable quality. The objective of our study was to assess the quality of crop and management data available from the reports on the regional adaptation trials for rice cultivars. We also aimed to propose the measures for improvement of the data quality, which would aid reliable estimation of cultivar parameters. DatasetRanker, which is the tool designed for quantitative assessment of the data for parameter calibration, was used to evaluate the quality of the data available from the regional adaptation trials. It was found that these data for rice cultivars were classified into the Silver class, which could be used for validation or calibration of key cultivar parameters. However, those regional adaptation trial data would fall short of the quality for model improvement. Additional information on management, e.g., harvest and irrigation management, can increase the quantitative quality by 10% with the minimum effort and cost. The quality of the data can also be improved through measurements of initial conditions for crop growth simulations such as soil moisture and nutrients. In addition, crop model improvement can be facilitated using crop growth data in time series, which merits further studies on development of approaches for non-destructive methods to monitor the crop growth.

Rice yield prediction in South Korea by using random forest (Random Forest를 이용한 남한지역 쌀 수량 예측 연구)

  • Kim, Junhwan;Lee, Juseok;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.75-84
    • /
    • 2019
  • In this study, the random forest approach was used to predict the national mean rice yield of South Korea by using mean climatic factors at a national scale. A random forest model that used monthly climate variable and year as an important predictor in predicting crop yield. Annual yield change would be affected by technical improvement for crop management as well as climate. Year as prediction factor represent technical improvement. Thus, it is likely that the variables of importance identified for the random forest model could result in a large error in prediction of rice yield in practice. It was also found that elimination of the trend of yield data resulted in reasonable accuracy in prediction of yield using the random forest model. For example, yield prediction using the training set (data obtained from 1991 to 2005) had a relatively high degree of agreement statistics. Although the degree of agreement statistics for yield prediction for the test set (2006-2015) was not as good as those for the training set, the value of relative root mean square error (RRMSE) was less than 5%. In the variable importance plot, significant difference was noted in the importance of climate factors between the training and test sets. This difference could be attributed to the shifting of the transplanting date, which might have affected the growing season. This suggested that acceptable yield prediction could be achieved using random forest, when the data set included consistent planting or transplanting dates in the predicted area.