• Title/Summary/Keyword: Crop Land

Search Result 779, Processing Time 0.027 seconds

Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis (MODIS 위성영상 기반 ESI와 ROC 분석을 이용한 가뭄위험평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.51-61
    • /
    • 2020
  • Drought events are not clear when those start and end compared with other natural disasters. Because drought events have different timing and severity of damage depending on the region, various studies are being conducted using satellite images to identify regional drought occurrence differences. In this study, we investigated the applicability of drought assessment using the Evaporative Stress Index (ESI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images. The ESI is an indicator of agricultural drought that describes anomalies in actual and reference evapotranspiration (ET) ratios that are retrieved using remotely sensed inputs of Land Surface Temperature (LST) and Leaf Area Index (LAI). However, these approaches have a limited spatial resolution when mapping detailed vegetation stress caused by drought, and drought hazard in the actual crop cultivation areas due to the small crop cultivation in South Korea. For these reasons, the development of a drought index that provides detailed higher resolution ESI, a 500 m resolution image is essential to improve the country's drought monitoring capabilities. The newly calculated ESI was verified through the existing 5 km resolution ESI and historical records for drought impacts. This study evaluates the performance of the recently developed 500 m resolution ESI for severe and extreme drought events that occurred in South Korea in 2001, 2009, 2014, and 2017. As a result, the two ES Is showed high correlation and tendency using Receiver Operating Characteristics (ROC) analysis. In addition, it will provide the necessary information on the spatial resolution to evaluate regional drought hazard assessment and and the small-scale cultivation area across South Korea.

Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid

  • Zhang, Benyue;Zhao, Hongyan;Yu, Hairu;Chen, Di;Li, Xue;Wang, Weidong;Piao, Renzhe;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.739-747
    • /
    • 2016
  • The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l-1 g-1 VS, 322 l-1 g-1 VS, and 304 l-1 g-1 VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml-1 g-1 VS, 461.73 ml-1 g-1 VS, and 451.76 ml-1 g-1 VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

Analysis of Cropland Spectral Properties and Vegetation Index Using UAV (UAV를 이용한 농경지 분광특성 및 식생지수 분석)

  • LEE, Geun-Sang;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.86-101
    • /
    • 2019
  • Remote sensing technology has been continuously developed both quantitatively and qualitatively, including platform development, exploration area, and exploration functions. Recently, the use cases and related researches in the agricultural field are increasing. Also, since it is possible to detect and quantify the condition of cropland and establish management plans and policy support for cropland and agricultural environment, it is being studied in various fields such as crop growth abnormality determination and crop estimation based on time series information. The purpose of this study was to analyze the vegetation index for agricultural land reclamation area using a UAV equipped with a multi-spectral sensor. In addition, field surveys were conducted to evaluate the accuracy of vegetation indices calculated from multispectral image data obtained using UAV. The most appropriate vegetation index was derived by evaluating the correlation between vegetation index calculated by field survey and vegetation index calculated from UAV multispectral image, and was used to analyze vegetation index of the entire area.

A Survey on Cold-induced Sterility of Rice at High Land of Kangweon Province in 1988 (1988년도 강원도 산간 지대의 벼 장해형랭해 실태조사)

  • 허범량;안명훈;김기식;김재록;사종구;김승경;장진선;김득래
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.6
    • /
    • pp.481-486
    • /
    • 1990
  • A survey was carried out on the cold-induced sterility of paddy rice in 1988 in the alpine area of Kangweon province when cold spell occurred during late July to early August, During this period minimum temperature as low as 8.5$^{\circ}C$ and 5.7$^{\circ}C$ was recorded at Dunnae and Jinbu, respectively. The rice cultivars, which encountered this cold spe]J at meiotic stage of microspore, were damaged by sterility in most alpine areas of higher than 300m in altitude. To secure spilkelet fertility higher than 80% it was estimated that the minimum and average air temperature accumulated during 13 days of meiotic stage should be higher than 2$25^{\circ}C$ and 285$^{\circ}C$, respectively and/or the duration of lower than 17$^{\circ}C$ in minimum temperature should not exceed fivedays during that period.

  • PDF

Bacterial community structure of paddy fields as influenced by heavy metal contamination

  • Tipayno, Sherlyn;Samaddar, Sandipan;Chatterjee, Poulami;Halim, MD Abdul;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.245-245
    • /
    • 2017
  • Heavy metal pollution of agricultural soils affects land productivity and has impact on the quality of surrounding ecosystem. Soil microbial community parameters are used as reliable indices for assessing quality of agricultural lands under metal stress. This study investigated bacterial community structure of polluted and undisturbed paddy soils to elucidate soil factors that are related to alteration of bacterial communities under conditions of metal pollution. No obvious differences in the richness or diversity of bacterial communities were observed between samples from polluted and control areas. The bacterial communities of three locations were distinct from one another, and each location possessed distinctive set of bacterial phylotypes. The abundances of several phyla and genera differed significantly between study locations. Variation of bacterial community was mostly related to soil general properties at phylum level while at finer taxonomic levels concentrations of arsenic and lead were significant factors. According to results of bacterial community functional prediction, the soil bacterial communities of metal polluted locations were characterized by more abundant DNA replication and repair, translation, transcription and nucleotide metabolism pathway enzymes while amino acid and lipid metabolism as well as xenobiotic biodegradation potential was reduced.Our results suggest that the soil microbial communities had adapted to the elevated metal concentrations in the polluted soils as evidenced by changes in relative abundances of particular groups of microorganisms at different taxonomic resolution levels, and by altered functional potential of the microbial communities.

  • PDF

Effects of the applications of excessive irrigation water and acetaldehyde on Chinese yam tubers at byobusan area of Aomori prefecture in Japan

  • Kawasaki, Michio;Keimatsu, Ryo;Endo, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.247-247
    • /
    • 2017
  • Byobusan area of Aomori prefecture in Japan was a marshy sand dune and had developed for agricultural land use with a large-scale sprinkler system. Recently, it becomes an agricultural problem at this area that distinctive damage with browning maculation and fissures frequently occurs in Chinese yam tubers. Acetaldehyde is one of the factor candidates of underground part damage in plants. In this study, incidence rate of the tuber damage, and the morphological character and elemental composition of the damage parts in tubers were investigated with applications of excessive irrigation water or acetaldehyde water solution into the yam field. The incidence rate of the distinctive tuber damage increased as the input amount of irrigation water was increased. At the browning maculation parts of the tubers, many fissures and damages of cork layer were observed under scanning electron microscopy. In addition, the periderm of tubers was significantly thicker in damaged parts than in non-damaged parts. Funguses, bacterium and nematodes were not observed in the damaged part under scanning electron microscopy. The weight ratio of each constituent element in an analyzed area relative to the total weight of major essential elements was measured with energy dispersive X-ray spectrometry. The results showed that the weight ratios of boron, carbon, phosphorus, sulfur and calcium were higher in damaged parts than in non-damaged parts whereas the weight ratios of oxygen and chlorine were lower in damaged parts than in non-damaged parts. It was also shown by this spectrometry that iron, cadmium, lead and zinc were not directly involved in occurrence of the tuber damage. In this study, there was no remarkable difference of tuber appearance between non-acetaldehyde and acetaldehyde application treatments. From the above results, it is shown that the damage would be a physiological disorder induced by the input of a large quantity of water in the sandy field.

  • PDF

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

Inheritance of Agronomic Traits and Their Interrelationship in Mungbean(Vigna radiata(L.) Wilczek)

  • Sriphadet, Sukhumaporn;Lambrides, Christopher J.;Srinives, Peerasak
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.249-256
    • /
    • 2007
  • A study was conducted to observe the variation and inheritance of agronomic traits and their interrelationship in mungbean. The objective of the study was to compare agronomic traits and hardseed percentage of 268 recombinant inbred lines(RILs) developed from the cross between wild Vigna subspecies sublobata "ACC 41" with the mungbean cultivar "Berken". The RIL population and their parents were evaluated under controlled conditions in a glass house at the University of Queensland, Brisbane, Australia. The results showed significant differences among the RILs and among the parents in all traits under study. Berken had a longer flowering date and a higher seed weight per plant, but less total leaf number and pod number per plant than ACC 41. A germination test between papers revealed that ACC 41 was 100% hard-seeded and did not germinate at all, while Berken germinated up to 100%. Their RILs distributed well between 0 to 100% hardseed. Upon scarification, all hardseed germinated within seven days. Narrowsense heritability estimates of total leave number, hardseedness, pod length, and pod width were highly heritable at 89.9, 98.9, 93.7, and 93.2%, respectively. The heritability of seed weight per plant and number of seeds per plant were lower at 63.1 and 58.4%, respectively. Seed weight per plant showed positive transgressive segregation when compared with ACC 41 and a positive correlation with 100 seed weight. While the number of seeds per pod showed a negative transgressive segregation when compared with Berken and a negative correlation with pod length and pod width. The RILs gave a 1:1 segregation ratio in leaflet shape, growth habit, and growth pattern, indicating that these traits were controlled by a single dominant gene.

  • PDF

Optimum germination temperature and seedling root growth characteristics of Camelina (카멜리나 (Camelina sativa Crtz.) 발아 적온 및 발아초기 뿌리생육 특성)

  • Park, Joon Sung;Choi, Young In;Kim, Augustine Yonghwi;Lee, Sang Hyub;Kim, Kyung-Nam;Suh, Mi Chung;Kim, Gi-Jun;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • A genus Camelina has been attracted as a promising oil crop, especially available in drought and marginal conditions. Due to more demands on arable land for bioenergy crops, price of agricultural products has been a challengeable issue. In that respect, development of Camelina crop with higher germination rate and germination energy can be a strategy to secure seedling establishment, nutrient uptake and long vegetative period. In order to be easily available in the field and laboratory conditions, Camelina seed needs to be optimized for its germination temperature. Germination temperature regime was in a range of 8 to $32^{\circ}C$ initially, and consecutively narrowed down to 8 to $20^{\circ}C$. Based on the temperature range, Camelina germinated greater than 96% at $8-16^{\circ}C$ in two weeks after sowing, but germination rate started to decrease at the higher than $24^{\circ}C$ and was significantly low at higher than $32^{\circ}C$. In terms of rapid time to reach the maximum germination rate and greater germination energy, temperature ranged from 12 to $16^{\circ}C$ was found to be desirable for Camelina germination. Although germinationa rate was greater at $16^{\circ}C$, lower temperature close to $12^{\circ}C$ would be favored for the field conditions where greater root growth leading to healthier seedlings and better nutrient or water availability is considerably demanded.

A Study on Mechanism of Consumed Water in tne Farm Land (밭에의 토양수분 소비기구에 관한 연구)

  • 류능환;민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.4
    • /
    • pp.3555-3571
    • /
    • 1974
  • This experiment of which aim contribute to plan irrigation system so as to increase forage crop yields, was conducted to estimate evapotranspiration amount of forage crops and to find out system of consumed water in a pasture-ground. The results obtained by this study are as follows: 1. The general weather conditions which, were closely related to the evapotrannpiration of forage crops were nearly same as those of the average year with the exception that temperature of May and June were slightly low. 2. According to the investigation of potential evapotranspirations (P.E) or forage crops and its changes during growing periods, changes of tenday P.E. were high significant according to the harvesting period. P.E of Alfalfa of which yield was the largest was the biggest. Althrough the correlations between P.E. and meteorological factors were irregular oming to three-time harvesting, correlation between ten-day evapotraspiration amount and copper plated pan evaporation or solar radiation was high positive significant. 4. Predicting formulas of P.E. were led by weather factors, and also relatione between P.E. and weather factors were showed as figure. from the these formulas, P.E. may be calculated by weather factors. 5. Predicting formulas of P.E. were led by mean temperature and copper plated pan evaporation, and by mean temperature and solar radiation. As computed values and measured values showed in figure, these formulas were high signiflent. 6. In the total consumed soil water duration of 10 days which, was non-rain period from 12th to 21th of August, Alfalfa was the largest 48.1mm, second, Orchard grass 40.1mm and Fescue 37.6mm, and Ladino clover was the smallest 37.1mm, also, order of each forage crop yield amound. was same to the abov. Order of soil moisture extraction rate of soil layer of all the for forage crops dulation of ten-day was soil layer 1 which was largest, soil layer 2, 3, and 4 Reviewing the the first five-day and the second five day, in the first five-day, order of that of all the forage crops was same to the above, but in the second five-day, that of soil layer 2 or 3 was more than the of soil layer 1.

  • PDF