• Title/Summary/Keyword: Crop Information System

Search Result 303, Processing Time 0.032 seconds

A Study on the Design of Data Collection System for Growing Environment of Crops (작물 근권부 생장 환경 Data 수집 시스템 설계에 관한 연구)

  • Lee, Ki-Young;Jeong, Jin-Hyoung;Kim, Su-Hwan;Lim, Chang-Mok;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.764-771
    • /
    • 2018
  • Domestic and foreign agricultural environments nowadays are undergoing various changes such as aging of agricultural population, increase of earned population, rapid climate change, diversification of agricultural product distribution structure, depletion of water resources and limited cultivation area. In order to respond to various environmental changes in recent agriculture, practical use of Smart Greenhouse to easily record, store and manage crop production information such as crop growing information, growth environment and agriculture work log, Interest is growing. In this paper, we propose a system that collects the situation information necessary for growth such as temperature, humidity, solar radiation, CO2 concentration, and monitor the collected data, which can be measured in the rhizosphere of the crop. We have developed a system that collects data such as temperature, humidity, radiation, and growth environment data, which are measured by data obtained from the rhizosphere measuring section of a growing crop and measured by a sensor, and transmitted to a wireless communication gateway of 400 MHz. We developed the integrated SW that can monitor the rhythm environment data and visualize the data by using cloud based data. We can monitor by graph format and data format for visualization of data. The existing smart farm managed crops and facilities using only the data within the farm, and this study suggested the most efficient growth environment by collecting and analyzing the weather and growth environment of the farms nationwide.

Study on Establishment of the Greenhouse Environment Monitoring System for Crop Growth Monitoring (작물 생식 모니터링을 위한 온실환경 모니터링 시스템 구축연구)

  • Kim, Won-Kyung;Cho, Byeong-Hyo;Hong, Youngki;Choi, Won-Sik;Kim, Kyoung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2022
  • Currently, the agricultural population in Korea indicates a decreasing and aging orientation. As the population of farm labor continues to decline, so farmers are feeling the pressure to be stable crop production. To solve the problem caused by the decreasing of farm labor, it is necessary to change over to "Digital agriculture". Digital agriculture is tools that digitally collect, store, analyze, and share electronic data and/or information in agriculture, and aims to integrate the several digital technologies into crop and livestock management and other processes in agriculture fields. In addition, digital agriculture can offer the opportunity to increase crop production, save costs for farmer. Therefore, in this study, for data-based Digital Agriculture, a greenhouse environment monitoring system for crop growth monitoring based on Node-RED, which even beginners can use easily, was developed, and the implemented system was verified in a hydroponic greenhouse. Several sensors, such as temperature, humidity, atmospheric pressure, CO2, solar radiation, were used to obtain the environmental data of the greenhouse. And the environmental data were processed and visualized using Node-RED and MariaDB installed in rule.box digital. The environment monitoring system proposed in this study was installed in a hydroponic greenhouse and obtained the environmental data for almost two weeks. As a result, it was confirmed that all environmental data were obtained without data loss from sensors. In addition, the dashboard provides the names of installed sensors, real time environmental data, and changes in the last three days for each environmental data. Therefore, it is considered that farmers will be able to easily monitor the greenhouse environment using the developed system in this study.

Comparative Analysis of Crop Monitoring System Based on Remotely-Sensed Data (위성영상을 활용한 작황모니터링 시스템의 사례분석 연구)

  • Lee, Jung-Bin;Nguyen, Hieu Cong;Kim, Jeong-Hyun;Hong, Suk-Young;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.641-650
    • /
    • 2014
  • Now global climate change is changing environmental factors, such as temperature and precipitation, which have a great effect on crop yields. Accordingly, crop yield forecast is becoming more important to global food supplies and sustainable development of rural areas. Worldwide, many countries, such as USA, China, Canada, and institutions, such as FAO, USDA, NASA, maintain the cooperative relationship to operate the crop monitoring system at both the national and global scale. This paper aims to investigate the current developments of crop monitoring systems in terms of information level, remotely-sensed data, and biophysical parameters, and to propose the direction of the advanced corp monitoring system based on remote sensing.

Design and Development of Web-Based Decision Support Systems for Wheat Management Practices Using Process-Based Crop Model (과정기반 작물모형을 이용한 웹 기반 밀 재배관리 의사결정 지원시스템 설계 및 구축)

  • Kim, Solhee;Seok, Seungwon;Cheng, Liguang;Jang, Taeil;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.17-26
    • /
    • 2024
  • This study aimed to design and build a web-based decision support system for wheat cultivation management. The system is designed to collect and measure the weather environment at the growth stage on a daily basis and predict the soil moisture content. Based on this, APSIM, one of the process-based crop models, was used to predict the potential yield of wheat cultivation in real time by making decisions at each stage. The decision-making system for wheat crop management was designed to provide information through a web-based dashboard in consideration of user convenience and to comprehensively evaluate wheat yield potential according to past, present, and future weather conditions. Based on the APSIM model, the system estimates the current yield using past and present weather data and predicts future weather using the past 40 years of weather data to estimate the potential yield at harvest. This system is expected to be developed into a decision support system for farmers to prescribe irrigation and fertilizer in order to increase domestic wheat production and quality by enhancing the yield estimation model by adding influence factors that can contribute to improving wheat yield.

Prospects of Stable Production Technologies for Food Crops (식량 안정생산기술의 전망)

  • Chae Je Cheon;Gang Yang Sun;Lee Yeong Ho;Nam Jung Hyeon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.11a
    • /
    • pp.102-144
    • /
    • 1999
  • The major problems of food crop cultivation in Korea are low yield of most crops except rice. inefficient cultivation techniques for aged farmers. and low international competibility. Therefore, development of cultivation techniques of food crops should aim the yield. quality improvement, labor reduction and production cost. The primary issue for increasing the yield of soybean, barely and wheat is to reduce the yield gap between the farmer's yield and recommended ones of experiment station. More advanced cultivation techniques needs to be developed. and/or the conventional breeding methods to be reconsidered. The newly developed labor-saving mechanized technique needs to reduce labor hours , and the cost of agricultural implements and machineries. In other words the labor-saving mechanized technique should be developed based on the improvement of total farming system as well as systemic fundamental innovation of cultural methods. The efficiency of solar energy use in food production of Korea in 1997 is as low as $0.52{\%}$ so there is much room to increase yield. It is recommendable that the concept of food Production should be changed to energy Producing efficiency Per unit area basis from volume and weight of food materials. Moreover, introduction of resonable cropping system is needed to increase yield of main crops, farmer's income, solar energy use efficiency, and decrease of land service expenditure. Current cropping system emphasized on economic crops. especially in vegetables , is not desirable for resonable use of arable land. stability of agricultural management and staple food crop self-sufficiency ratio. It is desirable to increase food crops . that are energy of carbohydrate and protein rich and land dependent crops. in cropping system. And the agronomist should develop the cultural methods to replace food crops for food self-sufficiency and stable farming management instead of economic crops in current cropping system. Low-input and environmentally-sound crop cultivation techniques, especially nitrogen-reducing culture technique which is directly related to food crop quality, also needs to be developed urgently. The extended cultivation of corn in upland and barely and wheat in lowland as a feed stuffs is recommended to prevent further decrease of food self-sufficiency ratio, which is mainly caused by the high reliance on imported feed grain. It is also considered that the calculation and presentation methods of standard agricultural income needs to be improved. The current calculation method uses unit land area of 10a regardless of crop kinds , characteristics of agricultural management and cultivation scale. So, it is apt to lead misunderstanding of farm income value. Therefore. it should show an income of average farmers for certain number of years. Research and developing system for food producing is not desirable because they are conducted currently individual crop and mono-culture basis. But actual agricultural income is usually earned by cropping system including upland and lowland. For example. the barley and wheat is usually cultivated in double cropping system. The cooperation among research institutes such as university agribusiness. government and farmers is indispensible. The public information and education on importance and consumption habit of food crops is necessary in Korean society to increase food self-sufficiency through nationwide cooperation.

  • PDF

Implementation of Facility Management System for Plant Factory (식물공장 시설관리 시스템의 구현)

  • Lee, Yong-Woong;Seo, Beom-Seok;Kim, Chan-Woo;Kim, Kyung-Hee;Park, Yang-Ho;Shin, Chang-Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2011
  • This paper suggests the Facility Management System for plant factory promising to be a core technology of the agriculture in the future. This system makes diagnoses that status from sensors or facilities in the factory for exact operation and monitors the internal environment with the control status in real-time. It is expected that we could operate a plant factory safely and effectively by using the system. The system consists of the data management module, the context provider module, the context interpreter module, the service provider module, the data storage and user interface. The system provide with the failure diagnosis service, the facility control service, and the high-reliability monitoring service via the interactions between above modules. The failure diagnosis service determines whether the sensors or facility devices are in failure or not, and informs the administrator of their conditions. The facility control service is activated in case if the facilities need to be managed during the diagnosis for failure or malfunction processes. The high-reliability monitoring service provides the administrator with verified data through the failure diagnosis service. Then we confirmed that the suggested system operates correctly through the system simulation.

Water/nutrient use efficiency and effect of fertigation: a review

  • Woojin Kim;Yejin Lee;Taek-Keun Oh;Jwakyung Sung
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.919-926
    • /
    • 2022
  • Fertigation, which has been introduced in agricultural fields since 1990, has been widely practiced in upland fields as well as in plastic film houses as part of the crop production system. In accordance with demands in the agricultural sector, a huge number of scientific studies on fertigation have been conducted worldwide. Moreover, with a combination of advanced technologies such as big-data, machine learning, etc., fertigation is positioned as an indispensable tool to achieve sustainable crop production and to enhance nutrient and water use efficiency. In this review, we focused on providing valuable information in terms of crop production and nutrient/water use efficiency. A variety of fertigation studies have described that enhancement of crop production did not differ relative to conventional method or slightly increased. In contrast, fertigation significantly improved nutrient/water use efficiency, with a reduction in use ranging from 20 to 50%. Water-soluble organic resources such as livestock manure and agricultural byproducts also have been identified as useful resources like chemical fertilizers. Furthermore, the initial irrigation point was generally recommended in a range of -10 - -40 kPa, although the point differed according to the crop and crop growth stage. From this review, we suggest that fertigation, which is closely integrated with advanced technology, could be a leading technology to attain not only food security but also carbon neutrality via improvement of nutrient/water use efficiency.

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM (PART II) - Irrigation Scheduling based on Evapotranspiration Rate-

  • Tateishi, M.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.764-769
    • /
    • 2000
  • A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.

  • PDF

A Computer-Based Advisory System for Diagnosing Crops Diseases in Korea (컴퓨터를 이용한 식물병 임상진단 시스템 개발)

  • 이영희;조원대;김완규;김유학;이은종
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.99-104
    • /
    • 1994
  • A computer-based diagnosing system for diseases of grasses, ornamental plant and fruit trees was developed using a 16 bit personal computer (Model Acer 900) and BASIC was used as a programing language. the developed advisory system was named as Korean Plant Disease Advisory System (KOPDAS). The diagraming system files were composed of a system operation file and several database files. The knowledge-base files are composed of text files, code files and implement program files. The knowledge-base of text files are composed of 79 files of grasses diseases, 122 files of ornamental plant diseases and 67 files of fruit tree diseases. The information of each text file include disease names, causal agents, diseased parts, symptoms, morphological characteristics of causal organisms and control methods for the diagnosing of crop diseases.

  • PDF

AgroMeteorological Prognosis and Information Communication System (농업기상 예측 및 정보전달 시스템)

  • LEE Byong-Lyol
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.46-78
    • /
    • 2000
  • This paper is to introduce recent collaborative activities in agricultural weather information services among institutions in Korea as well as key concepts for understanding agrometeorological services. KMA and RDA have agreed upon the establishment of the Joint Committee for Agrometeorolgy at national level to strengthen the national agrometeorological services in data collection, information production, research, and services to end-users of agrometeorological information in Korea. Several on-going joint projects in agrometeorology by RDA/KMA are introduced in brief. The projects being developed are : Strengthening of the Joint Committee of agrometeorology, Extension of observation network for agricultural weather, Production of the detailed agrometeorological information based on numerical weather forecasts, Development of seasonal and interannual weather forecasts for agricultural applications, Information network system for supporting agrometeorological research, and Improvement of agrometeorological information services at national and regional level. Strengthening of programs for the education and training of agrometeorologists will be impending responsibilities of the government. The government must consider establishment of organizations dedicated to and in charge of national agrometeorological services to end-users. RDA and KMA should play a major role to obtain this goal, based on a close cooperation with universities, scientific societies, and other relevant institutions. If this plan is successful, major infrastructures and services in agrometeorology shall be established in the next 5 years, and we can contribute to regional and global societies through sharing experiences and know-hows.

  • PDF