• Title/Summary/Keyword: Crop Composition

Search Result 691, Processing Time 0.032 seconds

Microbial composition and diversity of the long term application of organic material in upland soil

  • An, Nan-Hee;Park, Jong-Ho;Han, Eun-Jung;Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.190-193
    • /
    • 2011
  • Organic and chemical fertilizer amendments are an important agricultural practice for increasing crop yields. In order to maintain the soil sustainability, it is important to monitor the effects of fertilizer applications on the shift of soil microorganism, which control the cycling of many nutrients in the soils. Here, culture-dependent and culture-independent approaches were used to analyze the soil microorganism and community structure under six fertilization treatments, including green manure, rice straw compost, rapeseed cake, pig mature compost, NPK +pig mature compost, NPK and control. Both organic and chemical fertilizers caused a shift of the cultural microorganism CFUs after treatments. Bacterial CFUs of the organic fertilization treatments were significantly higher than that of chemical fertilization treatments. The DGGE profiles of the bacterial communities of the samples showed that the green manure treatment was a distinct difference in bacterial community, with a greater complexity of the band pattern than other treatments. Cluster analyses based on the DGGE profile showed that rice straw compost and pig mature compost had a similar banding pattern and clustered together firstly. Rapeseed cake, NPK, NPK +pig manure compost and control clustered together in other sub-cluster and clearly distinguished from green manure.

Meat Quality Traits of Longissimus Muscle of Hanwoo Steers as a Function of Interaction between Slaughter Endpoint and Chiller Ageing

  • Dashdorj, Dashmaa;Oliveros, Maria Cynthia R.;Hwang, In-Ho
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.414-427
    • /
    • 2012
  • Carcass characteristics and meat quality traits as a function of endpoint months of slaughter age (26 vs 32 mon) and chiller ageing (1 vs 10 d) were evaluated for m. longissmus of 26 Hanwoo steers fed with commercial diets including whole crop barley silage. Totally twenty six Hanwoo steers for 6 mon of age that were fed until 26 mon of age constituted the short term-fed group and fed until 32 mon of age constituted long-term fed group. Carcasses were chilled for 24 h and were graded. Strip loin samples were divided into two age groups (1 d and 10 d). Long-term feeding increased carcass weight, rib-eye area, yield grade, marbling score, firmness and quality grade of the meat. The feeding for 32 mon produced tender, juicy meat (p<0.01) with lower cooking loss and higher rating score (p<0.05) than short term feeding, while other quality traits were not influenced by the length of feeding. Intramuscular fat content and oxidative stability (TBARS value) were significantly (p<0.05) higher in beef from long-term feeding however the length of feeding did not alter the fatty acid composition. Chiller aging reduced instrumental tenderness (WBSF value), improved color, sensory tenderness, acceptability and rating of beef. The results of the present study mirrors that Hanwoo steers until 32 mon of age overall improved carcass traits and palatability compared to that for 26 mon. However, from the viewpoints of economical and environmental aspects, cost of the additional feeding for 6 mon for value-adding of eating quality was relatively high and the effects in turn were limited.

QTL Mapping of Agronomic Traits in an Advanced Backcross Population from a Cross between Oryza sativa L. cv. Milyang 23 and O. glaberrima

  • Kang, Ju-Won;Suh, Jung-Pil;Kim, Dong-Min;Oh, Chang-Sik;Oh, Ji-Min;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.243-249
    • /
    • 2008
  • In the previous study, 141 $BC_3F_2$ lines from a cross between the Oryza sativa cv. Milyang 23 and O. glaberrima were used to identify favorable wild QTL alleles for yield component traits. In this study, we carried out QTL analysis of four grain morphology as well as four yield component traits using 141 $BC_3F_5$ lines from the same cross and compared QTLs detected in two different generations. The mean number of O. glaberrima segments in the 141 $BC_3F_5$ lines ranged from 1 to 13 with 2.69 and 5.71 of the average means of homozygous and heterozygous segments, respectively. There was a three-fold difference in the number of QTLs detected for four traits commonly evaluated in two generations (seven QTLs in the $BC_3F_5$ vs 21 in the $BC_3F_2$ population). The percentages of the phenotypic variance explained by QTLs in the BC3F5 population were similar to or less than those in the $BC_3F_2$ population. This is probably due to the difference in the genetic composition of two populations and the environmental effects. The locations of the QTLs commonly detected in both generations were in good agreement except for one QTL for spikelets per panicle. The yield QTL, yd3 was colocalized with the spikelets per panicle, spp3. Yield increase at this locus is due to the increase in spikelets per panicle, because both traits were associated with increase in spikelets per panicle and yield due to the presence of an O. glaberrima allele. Clusters of QTLs for grain morphology traits were observed in two chromosome regions. One cluster harboring five QTLs near SSR markers RM106 and RM263 was detected on chromosome 2. This population would serve as a foundation for development of the introgression line population from a cross between Milyang 23 and O. glaberrima.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

Compositional Analysis of Lentil (Lens culinaris) Cultivars Related to Colors and Their Antioxidative Activity

  • Lee, So-Young;Yeo, Yun-Soo;Park, Soo-Yun;Lee, Seong-Gon;Lee, Si-Myung;Cho, Hyun-Suk;Chung, Nam-Jin;Oh, Seon-Woo
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.192-203
    • /
    • 2017
  • Metabolite profile is a powerful analytical technique to identify the functional characterization of plants. In this study, the phytochemicals and secondary metabolites of lentils (Lens culinaris) were analyzed to compare the anti-oxidative activities according to the different colors. The polar metabolites, fatty acids, carotenoids, flavonoids, anthocyanins, total phenolic acids, DPPH activity were analyzed. Three kind of lentils, French green whole lentil (FG), red whole lentil (LR), and green whole lentil (LG) (ASIA SEED Co., LTD), were used for this study. Fatty acids, phytochemicals, and antioxidative components from each lentil varieties were analyzed by official methods. The contents of lutein in carotenoids were 6-9 times higher than zeaxanthin in all lentils, but were not significantly different among three varieties. The content of carotenoids in FG was lower significantly than those in the LR and LG. Myricetin and luteolin were detected in the only FG. Kaempferol and delphinidin were significantly highest in the FG. Most of the phenolic acids except coumarate were higher in FG and LG than in LR. Also antioxidant effects ($EC_{50}$) were higher in FG and LG than in LR. The analyzed metabolites obtained from lentils showed distinct separation in the PCA results according to the varieties. Also, lentils showed different anti-oxidant profiles according to the colors. FG and LG showing higher contents of phytochemicals showed higher antioxidative activity than LG containing relative low contents of phytochemicals.

Color Change Information Collection Using Python in The Event of Color Temperature Change (색온도 변화 시 파이썬을 이용한 색상 변화 정보의 수집)

  • Jeon, Byungil;Kim, Semin;Lee, Gyujeong;Lee, Jeongwon;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.618-620
    • /
    • 2019
  • Smart Farm, which combines agriculture and ICT convergence technology, is at a lower stage than other industries in Korea, but it is also one of the most active research and development fields. Smart Farm aims to improve the efficiency of each step by collecting, processing and analyzing various information of agriculture sector through convergence between agriculture and ICT technology. In this study, we studied the image processing method that can distinguish strawberry which can be harvested at harvest time by color for smart farm composition of strawberry which is a horticultural crop. Strawberry harvesting requires a lot of labor in the process of growing strawberries. In this study, we aim to collect information necessary for labor saving in strawberry harvester. As a precedent study, we plan to implement a form in which the color temperature changes according to the light direction and brightness value through OpenCV color detection using Python. In the future, it is planned to study strawberry color value suitable for harvest by applying compensation value to color temperature change.

  • PDF

Proximate Analysis of Ipomea Batatass L. Grown in Two Different Zones in Imo State

  • meoka, N.U.;Ogbonnaya, C.I.;Ohazurike, N.C.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • Proximate analysis of Ipomea batatass L. grown in two different locations in Imo State were investigated. Standard soil analytical method was used to determine the physiochemical contents of the two soil sample collected from Mgbidi and Orji Ipomea batatass L. farm land. The soil sand from Ipomea batatass L. root in Orji farm recorded highest percentage value of 75.00% compared to the soil sand Ipomea batatass L. root in Mgbidi farm with 27.00% value. The percentage value of silt was different as the soil Ipomea batatass L. root in Mgbidi farm had high value of 29.40% while soil silt of Ipomea batatass L. root in Orji farm had 13.40%. The soil clay, pH, Phosphorus and Nitrogen from Ipomea batatass L. root in Mgbidi farm recorded highest percentage value of 43.60%, 5.7, 23.20 and 0.35 compared to the soil sand Ipomea root in Orji farm with 11.60%, 5.4, 16.70 and 0.09 value respectively. Ca, Mg, K, and Na analyzed followed the same trend as the soil from Ipomea root in Mgbidi farm had high percentage value of Ca (10.00), Mg (1.60), K (0.54) and Na (0.43) respectively. The systematic study of physiochemical of the Ipomea soils could help in understanding the nutritional composition, the basic characteristics of the soils and the constraints associated with the management of the soils from the two locations.

Characteristics of Korean fashion design developed in the Hanbokwave project (한복웨이브 프로젝트에 개발된 한국적 패션디자인의 특성)

  • Eunju Park;Young-Ju Rhee
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.2
    • /
    • pp.228-247
    • /
    • 2023
  • In this study, an empirical analysis was conducted on the use of Korean design elements in the Hanbokwave project in 2022 in order to identify the expressed fashion characteristics and define Korean style. A case study was conducted on 98 items of clothing representing 10 Hanbok designer brands, and an analysis card was developed and used that classifies the silhouette of each item in detail. The analysis showed that in addition to the traditional skirt and Jeogori, the four stages of simulakr's image were prevalent in various fashion items such as shirts, blouses, jackets, crop tops, vests, dresses, and pants. In the composition of sleeves, many western clothing methods such as set-in-sleeve use and adjustment, hardcover buttons, and zippers were used to fuse the three-dimensional structure of western clothing and elements of traditional Hanbok to redefine it as postmodernism. It was recognized as a modern fashion, such as the trend of mixing and matching tops and bottoms, not a skirt and Jeogori set, by layering traditional clothes without hesitation or using them as a dress. As for the silhouette of the bottoms, the A-line showed a high frequency, and the prominent shape was identified as a traditional element widely used in modern Hanboks along with the element of wrinkles. This study is thought to be used as practical data for design development for the globalization of K-fashion in the future.

Development and Characterization of Novel Rapeseed (Brassica napus L.) Mutant Lines through Mutation Breeding

  • Baul Yang;Sang Hoon Kim;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.23-23
    • /
    • 2022
  • Rapeseed (Brassica napus L.) is one of the most valuable oilseed crop in the world. It is widely used in various industries, such as food, animal feed, energy and chemical industries. In order to improve the industrial requirements for rapeseed, useful agronomic characteristics (higher yields and disease resistance etc.) and modified oil traits (fatty acid composition and fat content) are important in rapeseed. However, Korea has limiting genetic resources of novel traits in rapeseed. In this research, novel rapeseed mutant genotypes by mutation breeding was developed. The mutant lines were generated by the treatment of the seeds of the original cultivar 'Tamra' with 700 Gy of gamma-ray (60Co). Mutants showing varied in flowering time, crude fat content, seed yield and fatty acid content that exhibited stable inheritance of the mutated characteristics from M5 to M7 generations were selected. We investigated genetic variation using SNPs identified from GBS analysis in rapeseed mutant lines derived from the gamma-ray, and interactions between the major agronomic and the oil traits. Significantly associated SNP loci were explored along with candidate genes using SNPs obtained by GBS analysis. As a results of association mapping, a total of 322 SNPs were significantly associated with agronomic traits (155 SNPs) and oil traits (167 SNPs). A total of 70 genes were annotated from agronomic characteristics SNPs; among them 7 genes significantly enriched in developmental process, and a total of 70 genes were annotated from crude fat content and fatty acid compositions SNPs; among them, 11genes were significantly enriched in biosynthetic process. These results could be used for the selection of rapeseed cultivar with enhanced qualities and potential economic benefits.

  • PDF

Comparative Analysis of Phenolic Compound of Mutant Lines of Sorghum (Sorghum bicolor)

  • Ye-Jin Lee;Baul Yang;Dong-Gun Kim;Sang Hoon Kim;Soon-Jae Kwon;Jae Hoon Kim;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.86-86
    • /
    • 2022
  • Sorghum (Sorghum bicolor) is increasingly important as a biomass crop worldwide. Its genetic diversity provides a large range of biochemical composition suitable for various uses as bioplastics. Phenolic compounds are the main compounds of lignocellulosic residues, which can be used as a source of active components for their use in active packaging materials. In this research, we investigated the total phenolic content (TPC) and the total flavonoid content (TFC) among 60 mutant lines (early heading, high biomass and dwarfness) and their original cultivars. Sixty sorghum mutant lines were developed by treatment with gamma-ray or proton irradiation in 14 sorghum cultivars. The levels of TPC and TFC of 14 original cultivars were ranging from 3.27 to 11.54 mg/100 g and 2.39 to 6.74 mg/100 g, respectively. The TPCs of the mutant lines were ranging from 1.92 to 13.10 mg/100 g with average content of 6.35 mg/100 g. The TFCs of the mutant lines were ranging from 1.72 to 8.30 mg/100 g with average content of 4.20 mg/100 g. Three mutant lines derived from gamma-ray showed significant lower TPC and TFC than those of the original cultivar. While, five mutant lines showed significant higher TPC and TFC. These findings will be useful for the selection of sorghum genotypes with improved phenolic compounds.

  • PDF