• Title/Summary/Keyword: Critical-state

Search Result 1,843, Processing Time 0.026 seconds

A Literature Study on the Association with Critical State of Sasang Constitutional Symptoms and Cancer Related Symptoms (사상인 체질병증 험위증(險危證) 중 악성 종양으로 유발될 수 있는 증(證)에 대한 고찰)

  • Lee, Soo-Min;Park, So-Ra;Lee, Soo-Kyung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.27 no.3
    • /
    • pp.307-317
    • /
    • 2015
  • Objectives The purpose of study was to identify cancer related symptoms of Sasang Constitution based on the classic of Sasang Constitutional Medicine (SCM). Methods The bibliographical study was performed with "Dongyisoosebowon-Shinchukbon(東醫壽世保元 辛丑本)", Dongyisoosebowon-Sasangchobongwon(東醫壽世保元 四象草本券), "Cancer", and several review articles. The perspective on severe illness in SCM was investigated. And 'the critical state' of constitutional symptoms based on "Dongyisoosebowon" was identified as cancer related symptoms. Results and Conclusions The perspective on severe illness of SCM was focused on the human being itself, compared with symptom based traditional Chinese medicine. The preservation of requisite energy (保命之主) was a vital factor of longevity to maintain healthy status and the classification of severity of disease. And critical state was an important indicator to control severe illness. Regarding cancer related symptoms in SCM, Janggwol(臟厥), Eumsung-gyeokyang(陰盛隔陽證), Janggyeol(藏結證) of Soeumin symptoms, Hwangdal(黃疸), Haso(下消), Eumheo-oyel(陰虛午熱證), Gochang, Tohyul(吐血) of Soyangin's symptoms, Joyeol(燥熱證), Bokchang-bujong(腹脹浮腫) of Taeeumin's symptoms, and Eolgyek of Taeyangin's symptoms could be shown the association with cancer. According to the prognosis on disease severity, regimens of daily life, behavior modifications as well as medications were also emphasized with great importance to control severe illness in SCM. These holistic approach for controlling severe illness in SCM could lead to the improvement of treatment outcome.

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response (전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발)

  • Woo, Sang Inn;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.117-124
    • /
    • 2020
  • The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.

Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection

  • Lim, Chemin;Choi, Wonchang;Sumner, Emmett A.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.57-71
    • /
    • 2013
  • The prediction of the low cycle fatigue (LCF) life of beam-column connections requires an LCF model that is developed using specific geometric information. The beam-column connection has several geometric variables, and changes in these variables must be taken into account to ensure sufficient robustness of the design. Previous research has verified that the finite element model (FEM) can be used to simulate LCF behavior at the end plate moment connection (EPMC). Three critical parameters, i.e., end plate thickness, beam flange thickness, and bolt distance, have been selected for this study to determine the geometric effects on LCF behavior. Seven FEMs for different geometries have been developed using these three critical parameters. The finite element analysis results have led to the development of a modified LCF model for the critical parameter groups.

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

Toward the Application of a Critical-Chain-Project-Management-based Framework on Max-plus Linear Systems

  • Takahashi, Hirotaka;Goto, Hiroyuki;Kasahara, Munenori
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.155-161
    • /
    • 2009
  • We focus on discrete event systems with a structure of parallel processing, synchronization, and no-concurrency. We use max-plus algebra, which is an effective approach for controller design for this type of system, for modeling and formulation. Since a typical feature of this type of system is that the initial schedule is frequently changed due to unpredictable disturbances, we use a simple model and numerical examples to examine the possibility of applying the concepts of the feeding buffer and the project buffer of critical chain project management (CCPM) on max-plus linear discrete event systems in order to control the occurrence of an undesirable state change. The application of a CCPM-based framework on a max-plus linear discrete event system was proven to be effective.

Influence of Bearing Stiffness on the Static Properties of a Planetary Gear System with Manufacturing Errors

  • Cheon, Gill-Jeong;Parker, Robert, G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1978-1988
    • /
    • 2004
  • Hybrid finite element analysis was used to analyze the influence of bearing stiffness on the static properties of a planetary gear system with manufacturing errors. The effects of changes in stiffness were similar for most of the manufacturing errors. State variables were most affected by the stiffness of the planet ,bearings. Floating either the sun or carrier helps to equal load sharing and minimizes the critical tooth stress. The effects of a floating sun and carrier are similar, but it is not recommended that both float, because this can induce greater critical tooth stress. Planet bearing stiffness should be optimized. Both load sharing and critical tooth stress should be considered to determine optimal bearing stiffness.

A Research for apportionment ratio of Roof Load in Traditional Wooden Structure's Dori (전통건축물에서 도리의 지붕하중 분담비율에 관한 연구)

  • Hwang, Jong-Kook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.247-250
    • /
    • 2007
  • In korean traditional wooden structure, to know the critical pass of roof load transmission is very important. to know the critical pass of roof load transmission and to find the role of each dori members, used loading block and load cell. The total weight of loading blocks was 5,8880 N and the number of loading blocks were 16, The experimental fran1e has 1/2 scale. From middle-dori to outside-dori, the linearity of line can't guarantee. So, the distribution of roof load in dori is effected by the initial state of dori. In this research, to remove the effect of initial state, initial deformation was allowed by initial setting.

  • PDF

Study on the Wrinkling Prediction in Sheet Metal Stamping Processes (박판 스탬핑 공정의 주름발생 예측에 관한 연구)

  • 황보원;금영탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.131-142
    • /
    • 2001
  • A wrinkling is the instability phenomenon influenced by material properties, shape geometry, forming conditions, stress state, etc. The wrinkling is considered as a critical defect in appearance of product. Many wrinkling prediction methods using thickness strain distribution and farming analysis have been proposed. The wrinkling, however, is not easily predicted precisely by these methods. In this study, the region in the biaxial plane stress state is modeled with a rectangular plate introducing the effective dimension, and critical stress values for the wrinkling are calculated. Prediction index for the wrinkling is then evaluated by normalizing the actual stress with respect to the critical stress. In order to show the validity and efficiency of the method proposed, the wrinkling prediction for a squared sheet in the uniaxial tensile stress and auto-body front finder panel is performed.

  • PDF

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

Aerodynamic shape optimization emphasizing static stability for a super-long-span cable-stayed bridge with a central-slotted box deck

  • Ledong, Zhu;Cheng, Qian;Yikai, Shen;Qing, Zhu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.337-351
    • /
    • 2022
  • As central-slotted box decks usually have excellent flutter performance, studies on this type of deck mostly focus on the vortex-induced vibration (VIV) control. Yet with the increasing span lengths, cable-supported bridges may have critical wind speeds of wind-induced static instability lower than that of the flutter. This is especially likely for bridges with a central-slotted box deck. As a result, the overall aerodynamic performance of such a bridge will depend on its wind-induced static stability. Taking a 1400 m-main-span cable-stayed bridge as an example, this study investigates the influence of a series of deck shape parameters on both static and flutter instabilities. Some crucial shape parameters, like the height ratio of wind fairing and the angle of the inner-lower web, show opposite influences on the two kinds of instabilities. The aerodynamic shape optimization conducted for both static and flutter instabilities on the deck based on parameter-sensitivity studies raises the static critical wind speed by about 10%, and the overall critical wind speed by about 8%. Effective VIV countermeasures for this type of bridge deck have also been proposed.