• Title/Summary/Keyword: Critical stiffness

Search Result 534, Processing Time 0.037 seconds

Computation of Critical Speeds for Design of Torsional Shafting with Gear-Branched Systems (치차-분지계를 갖는 비틀림 축계의 설계를 위한 위험속도 계산)

  • 최명수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.276-283
    • /
    • 2003
  • While designing a torsional shafting with various gear-branched systems, it is very important for system designers to obtain critical speeds accurately and easily. The author has studied the transfer stiffness coefficient method (TSCM) as a structural analysis algorithm. In this paper, the TSCM is applied to the computation of critical speeds for torsional shafting with gear-branched systems. The accuracy of the present method is confirmed by comparing with the results of the finite element method.

Effect of lamination pressing force for stiffness variation of a laminated rotor (적층로터의 강성 변경을 위한 적층판 압착력의 영향)

  • 김영춘;박희주;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF

Study of Critical Flutter Velocities of Bridge Girder Sections with Different Structural Stiffness (구조 강성에 따른 교량 구조물의 임계 플러터 속도 연구)

  • 박성종;권혁준;김종윤;한재흥;이인
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2004
  • Numerical analysis of wind effects on civil engineering structures was performed. Aerodynamic effect often becomes a governing factor and aeroelastic stability boundary becomes a prime criterion which should be confirmed during the structural design stage of bridges because the long-span suspension bridges are prone to the aeroelastic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. Navier-Stokes equations were used for the aeroelastic analysis of bridge girder section. The aeroelastic simulation is carried out to study the aeroelastic stability of bridges using both Computational Fluid Dynamic (CFD) and Computational Structural Dynamic (CSD) schemes. Critical flutter velocities were computed for bridges with different stiffness. It was confirmed that the critical flutter velocity of bridge girder section was sensitive to the change of structural stiffness.

A study of Improvement of Stiffness for Plastic PET bottle with Different Geometries and Numbers of Rib (리브 형상 및 개수에 따른 사각플라스틱 페트병의 강성보강에 관한 연구)

  • Young-Hoon Lee;Bum-Jin Park;Eui-Chul Jung;Jung-Gil Oh;Seok-Guwan Hong
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.33-41
    • /
    • 2023
  • Excessive use of plastic bottles contributes to a significant environmental issue due to the high volume of plastic waste generated. To address this, efforts are needed to reduce the weight of plastic bottles. However, indiscriminate weight reduction may compromise the essential rigidity required for plastic bottles. Extensive research on rib shape for pressure vessels are exists, but there is a few research of rib shapes to enhance the stiffness of plastic bottles. The following results were obtained from the analyses conducted in this study. 1) Among the rib cross-sections of square, trapezoid, and triangle, the buckling critical load of PET bottles with square-shaped ribs is improved by about 14% compared to the buckling critical load of PET bottles without ribs. 2) The buckling critical load is improved by about 18% when a square-shaped rib with an aspect ratio of 0.2 is applied, compared to the buckling critical load of the bottle without the rib. 3) When longitudinal and transverse square ribs were applied to the axial direction of the PET bottle, the buckling critical load was improved by about 32% and 58% compared to the buckling critical load of the PET bottle without ribs, respectively, indicating that applying longitudinal ribs is effective in reinforcing the stiffness of PET bottles. 4) When 14 transverse ribs were applied, the maximum improvement was about 48% compared to the buckling critical load of the plastic bottle without ribs. 5) When 3 longitudinal ribs were applied on each side, the maximum improvement was about 76% compared to the buckling critical load of the bottle without ribs. Therefore, it was concluded that for effective stiffness reinforcement of a 500ml square bottle with a thickness of 0.5mm, 3 square-shaped ribs with an aspect ratio of 0.2 should be applied in the longitudinal direction relative to the axial direction of the bottle.

Effect of Seal Wear on the Rotordynamics of a Multistage Turbine Pump (시일의 마멸이 다단 터빈 펌프 동특성에 미치는 영향)

  • 김영철;이동환;이봉주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1015-1023
    • /
    • 1997
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on its system behavior. Stiffness and damping coefficents of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annuler seals are calculated as functions of rotating speed as well as seal clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in vibration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Design Parameter Study on the Isolation Performance of the HSLDS Magnetic Vibration Isolator (HSLDS 마그네틱 진동절연체의 절연성능에 대한 설계 파라미터 분석)

  • Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.473-477
    • /
    • 2009
  • In general, the softer the stiffness of a linear vibration isolator the better the performance of isolation can be achieved. However, the stiffness of the isolator cannot be made too soft because it needs a sufficient stiffness to hold the load. This is the most critical limitation of a linear vibration isolator. Recently, a HSLDS (High-Static-Low-Dynamic-Stiffness) magnetic vibration isolator was proposed to overcome this fundamental limitation. The suggested isolator utilizes two pairs of attracting magnets that that introduces negative stiffness. Previously, this new type of vibration isolator was merely introduced and showed a possibility of practical use. In this paper, detailed dynamics of the HSLDS magnetic isolator are studied using computer simulations. Then, the isolation performance is examined for various design parameters to aid the practical use.

  • PDF

Design Parameter Study on the Isolation Performance of the HSLDS Magnetic Vibration Isolator (HSLDS 마그네틱 진동절연체의 절연성능에 대한 설계 파라미터 분석)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.92-97
    • /
    • 2010
  • In general, the softer the stiffness of a linear vibration isolator the better the performance of isolation can be achieved. However, the stiffness of the isolator cannot be made too soft because it needs a sufficient stiffness to hold the load. This is the most critical limitation of a linear vibration isolator. Recently, a HSLDS(high-static-low-dynamic-stiffness) magnetic vibration isolator was proposed to overcome this fundamental limitation. The suggested isolator utilizes two pairs of attracting magnets that introduces negative stiffness. Previously, this new type of vibration isolator was merely introduced and showed a possibility of practical use. In this paper, detailed dynamics of the HSLDS magnetic isolator are studied using computer simulations. Then, the isolation performance is examined for various design parameters to aid the practical use.

Stiffness Modeling of Toroidally-Wound BLDC Machine (환형권선 BLDC 전동기의 강성계수 모델링)

  • Lee, Hyun-Chu;Yoo, Seong-Yeol;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • Toroidally-wound brushless direct-current (BLOC) machines are compact, highly efficient, and can work across a large magnetic gap. For these reasons, they have been used in pumps, flywheel energy storage systems and left ventricular assist devices among others. The common feature of these systems is a spinning rotor supported by a set of (either mechanical or magnetic) bearings. From the view point of dynamics, it is desirable to increase the first critical speed of the rotor so that it can run at a higher operating speed. The first critical speed of the rotor is determined by the radial stiffnesses of the bearings and the rotor mass. The motor also affects the first critical speed if the rotor is displaced from the rotating center. In this paper, we analytically derive the flux density distribution in a toroidally-wound BLOC machine and also derive the negative stiffness of the motor, based on the assumption that the rotor displacement perturbs the flux density distribution linearly. The estimated negative stiffness is validated by finite element analyses.

A Study on Vibration Characteristics of Flywheel Energy Storage System Using Superconducting Magnetic Bearings (초전도자기베어링을 이용한 플라이휠 에너지 저장장치의 진동특성에 관한 연구)

  • 김종수;이수훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.170-177
    • /
    • 1998
  • The purpose of superconducting magnetic bearing flywheel energy storage system(SMB-FESS) is to store unused nighttime electricity as kinetic energy and convert it to electricity during daytime. The SMB-FESS is proposed as an efficient energy storage system because there is no mechanical problems, such as friction and wear The flywheel over SMB is rotated at a high speed, 50,000rpm. The major source of energy loss in the SMB-FESS is vibration of flywheel. Therefore, the vibration characteristics of SMB-FESS should be identified. In this study, the axial/radial stiffness and damping coefficient of SMB are measured by a vibration test. Natural frequencies and natural modes of flywheel and magnet are analyzed by a finite element method. The modal analysis of system is performed using the modal parameters of each component and the measured stiffness/damping coefficient. So, natural at frequencies and mode shapes of the joined system can be obtained. According to critical speed analysis, the system has two rigid conical modes in the low speed range. Nevertheless, the system has not been affected by the critical speed in the main operating range.

  • PDF

Experimental Study on the Dynamic Behavior of a 500Wh Flywheel Energy Storage Device (500Wh급 플라이휠 에너지 저장장치 회전체계 동적 거동의 실험적 고찰)

  • 김영철;경진호;최상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.36-42
    • /
    • 1997
  • A prototype of 500Wh class flywheel energy storage device was designed and manufactured to check the previously predicted system performance. The system was intentionally designed to show rigid body behavior up to the maximum operating speed of 60000Tpm and to have its 2nd rigid critical mode, of which nodal point lies on the flywheel center of mass, around 4000 to 6000rpm with radial magnetic bearing stiffness of l.e+6 N/m. Numerous experiments an the system behavior showed that the PM axial bearing, designed utilizing a commercial code, acts as resonably as predicted and, most importantly, the system becomes stable after the 2nd critical speed. The EM radial bearing, however, was found out to have orthotropic property with much less radial stiffness values than expected, so that it was observed that the 2nd forward and backward critical modes were excited at 310 and 590rpm respectively with larger vibration amplitudes. Thus, in order to improve the system dynamic behavior, the EM radial bearing is currently being re designed so as to get bigger stiffness and, in turn, smoother operation of the system.

  • PDF