• Title/Summary/Keyword: Critical span

Search Result 257, Processing Time 0.027 seconds

Buckling analysis of semi-rigid gabled frames

  • Rezaiee-Pajand, Mohammad;Shahabian, Farzad;Bambaeechee, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.605-638
    • /
    • 2015
  • It is intended to perform buckling analysis of steel gabled frames with tapered members and flexible connections. The method is based on the exact solutions of the governing differential equations for stability of a gabled frame with I-section elements. Corresponding buckling load and subsequently effective length factor are obtained for practical use. For several popular frames, the influences of the shape factor, taper ratio, span ratio, flexibility of connections and elastic rotational and translational restraints on the critical load, and corresponding equivalent effective length coefficient are studied. Some of the outcomes are compared against available solutions, demonstrating the accuracy, efficiency and capabilities of the presented approach.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System

  • Kim, Byung-Ok;Choi, Bum-Seog;Kim, Jeong-Man;Cho, Han-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1002-1006
    • /
    • 2015
  • In this paper, design and analysis of permanent magnet synchronous generator for ocean thermal energy conversion (OTEC) considering magnetically coupled turbine-rotor system is discussed. In particular, the rotor dynamics considering bearing span and journal shaft diameter is highlighted. The two topologies of permanent magnet synchronous generator with magnetic coupling are employed for comparison of computed rotor dynamics and generating characteristics. The analysis results show that the critical speed of the turbine-rotor system is higher when the rotor is coupled by magnetically coupling. Finally, the experimental results confirmed the validity of the proposed design and analysis scheme and successful development.

A Study on the Prestressing Effect of Three Span Continuous Preflex Composite Bridges by Lifting Two Supports (2지점 상승.하강에 의한 3경간 연속 프리플렉스 합성보의 Prestressing 효과에 관한 연구)

  • 구민세;정재운;김필식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.27-34
    • /
    • 1999
  • This study presents the concept and the effects of the lifting two supports method that makes get economical design sections and efficient stress condition. The analysis of relation between critical sections and ratios Is done. Also, connection between critical sections and design variable is analyzed. In order to resolve the effects of the lifting two supports method, sections which was designed with the existing method, lifting support method, are used. Finally, it is proved that the new method is more efficient than the existing methods in economy and structure.

  • PDF

Protein Interaction Mapping of Translational Regulators Affecting Expression of the Critical Stem Cell Factor Nos

  • Malik, Sumira;Jang, Wijeong;Kim, Changsoo
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2017
  • The germline stem cells of the Drosophila ovary continuously produce eggs throughout the life-span. Intricate regulation of stemness and differentiation is critical to this continuous production. The translational regulator Nos is an intrinsic factor that is required for maintenance of stemness in germline stem cells. Nos expression is reduced in differentiating cells at the post-transcriptional level by diverse translational regulators. However, molecular mechanisms underlying Nos repression are not completely understood. Through three distinct protein-protein interaction experiments, we identified specific molecular interactions between translational regulators involved in Nos repression. Our findings suggest a model in which protein complexes assemble on the 3' untranslated region of Nos mRNA in order to regulate Nos expression at the post-transcriptional level.

Dynamic testing of a soil-steel bridge

  • Beben, Damian;Manko, Zbigniew
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.301-314
    • /
    • 2010
  • The paper presents the results and conclusions of dynamic load tests that were conducted on a road bridge over the Mokrzyca river in Wroclaw (Poland) made of galvanized corrugated steel plates (CSP). The critical speed magnitudes, velocity vibration, vibration frequency were determined in the paper. The dynamic analysis is extremely important, because such studies of soil-steel bridges in the range of dynamic loads are relatively seldom conducted. Conclusions drawn from the tests can be most helpful in the assessment of behaviour of this type of corrugated plate bridge with soil. In consideration of application of this type of structure in the case of small-to-medium span bridges, the conclusions from the research will not be yet generalized to all types of such solutions. The detailed reference to all type of such bridge structures would be requiring additional analysis (field tests and calculations) on the other types of soil-steel bridges.

A Study on the Critical Point and Bifurcation According to Load Mode of Dome-Typed Space Frame Structures (돔형 스페이스 프레임 구조물의 하중모드에 따른 분기점 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Lee, Seung-Jae;Kim, Jong-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.121-130
    • /
    • 2011
  • Space frame structures have the advantage of constructing a large space structures without column and it may be considered as a shell structure. Nevertheless, with the characteristics of thin and long term of spacing, the unstable problem of space structure could not be set up clearly, and there is a huge difference between theory and experiment. Therefore, in this work, the tangential stiffness matrix of space frame structures is studied to solve the instability problem, and the nonlinear incremental analysis of the structures considering rise-span ratio(${\mu}$) and the ratio of load($R_L$) is performed for searching unstable points. Basing on the results of the example, global buckling can be happened by low rise-span ratio(${\mu}$), nodal buckling can be occurred by high rise-span ratio(${\mu}$). And in case of multi node space structure applying the ratio of load($R_L$), the nodal buckling phenomenon occur at low the ratio of load($R_L$), the global buckling occur a1 high the ratio of load($R_L$). In case of the global buckling, the load of bifurcation is about from 50% to 70% of perfect one's snap-through load.

Suppression of aerodynamic response of suspension bridges during erection and after completion by using tuned mass dampers

  • Boonyapinyo, Virote;Aksorn, Adul;Lukkunaprasit, Panitan
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The suppression of aerodynamic response of long-span suspension bridges during erection and after completion by using single TMD and multi TMD is presented in this paper. An advanced finite-element-based aerodynamic model that can be used to analyze both flutter instability and buffeting response in the time domain is also proposed. The frequency-dependent flutter derivatives are transferred into a time-dependent rational function, through which the coupling effects of three-dimensional aerodynamic motions under gusty winds can be accurately considered. The modal damping of a structure-TMD system is analyzed by the state-space approach. The numerical examples are performed on the Akashi Kaikyo Bridge with a main span of 1990 m. The bridge is idealized by a three-dimensional finite-element model consisting of 681 nodes. The results show that when the wind velocity is low, about 20 m/s, the multi TMD type 1 (the vertical and horizontal TMD with 1% mass ratio in each direction together with the torsional TMD with ratio of 1% mass moment of inertia) can significantly reduce the buffeting response in vertical, horizontal and torsional directions by 8.6-13%. When the wind velocity increases to 40 m/s, the control efficiency of a multi TMD in reducing the torsional buffeting response increases greatly to 28%. However, its control efficiency in the vertical and horizontal directions reduces. The results also indicate that the critical wind velocity for flutter instability during erection is significantly lower than that of the completed bridge. By pylon-to-midspan configuration, the minimum critical wind velocity of 57.70 m/s occurs at stage of 85% deck completion.

Web strain based prediction of web distortion influence on the elastic LTB limiting length

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.271-278
    • /
    • 2022
  • Buckling is one of the most critical phoneme in the design of steel structures. Lateral torsional buckling (LTB) is particularly significant for slender beams generally subjected to loading in plane. The web distortion effects on LTB are not addressed explicitly in standards for flexural design of steel I-section members. Hence, the present study is focused to predict the influence of the web distortion on the elastic (Lr) limiting lengths given in American Institute of Steel Construction (AISC) code for the lateral torsional buckling (LTB) behavior of steel beams due to no provision in the code for consideration of web distortion. For this aim, the W44x335 beam is adopted in the buckling analysis carried out by the ABAQUS finite element (FE) program since it is one of the most critical sections in terms of lateral torsional buckling (LTB). The strain results at mid-height of the web at mid-span of the beam are taken into account as the monitoring parameters. The web strain results are found to be relatively greater than the yield strain value when L/Lr is equal to 1.0. In other words, the ratio of L/Lr is estimated from the numerical analysis to be about 1.5 when the beam reaches its first yielding at mid-span of the beam at mid-height of the section. Due to the effect of web distortion, the elastic limiting length (Lr) from the numerical analysis is obtained to be considered as greater than the calculated length from the code formulation. It is suggested that the formulations of the limiting length proposed in the code can be corrected considering the influence of the web distortion. This correction can be a modification factor or a shape factor that reduces sectional slenderness for the LTB formulation in the code.

Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber (목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성)

  • Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.