• Title/Summary/Keyword: Critical slope height

Search Result 22, Processing Time 0.026 seconds

Seepage Characteristics of Agricultural Reservoir Embankment Considering Filter Interval (필터간격을 고려한 농업용저수지 제체의 침투특성)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • This study analyzed pore water pressure, seepage and leakage quantity, height of seepage and critical hydraulic gradient in order to suggest the seepage characteristics of agricultural reservoir embankment considering filter interval. The seepage characteristics of a deteriorated reservoir embankments were conducted according to the horizontal filter intervals range using three- dimensional finite element analysis. The wider the horizontal filter interval, the higher the pore water pressure increased, and the pore water pressure ratio in the center of the core has a greater effect than the base part. The seepage and leakage quantity appeared largely in the two-dimensional analysis conditions (case 1), where the filter was constructed totally in the longitudinal direction of the embankment, the wider the horizontal filter interval was gradually reduced. The reasonable filter intervals to yield efficient seepage characteristics were within 30 m for the pore water pressure of the core and the height of the seepage line. The stability of the filter installation was able to evaluate the stability of the piping by the critical hydraulic gradient method. The deteriorated reservoir with no filters or decreased functionality can significantly reduce the possibility of piping by simply installing a filter on the downstream slope. In the future, the deteriorated reservoir embankment should be checked for the reservoir remodeling because the core and filter functions have been lost or decreased significantly. In the case of a new installation, the seepage characteristic behavior due to the core and filter changes should be applied to the field after obtaining a reasonable horizontal filter interval that satisfies the safety factor by a three-dimensional analysis.

The Stability Evaluation of River Embankment for a Piping Phenomenon (하천제방의 세굴에 대한 안정성 연구)

  • Lee, Song;Park, Hyung-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2003
  • In this reseach, a seepage test is carried out for three kinds of soil using a upward seepage equipment. Reliability about the existing method of pipining investigation were verified making an estimate of the critical velocity, the critical hydraulic gradient, and hydraulic conductivity and so on. Also, sensitive analyses were carried out using Plaxis that is FEM Program about design factors of scour. The height of core had a big infulence on the hydraulic gradient of the embankment's lower part in the result of sensitive anaylsis. Also, second only to the height of core, and the slope of embankment, the width of crest had influence on scour. However, the change of hydraulic gradient in the effluent gateway had a little influence on the crest width of core. Using these results of sensitive analysis on designing, hydraulic gradient in the effluence gateway turned out to be reducing by altering design factors that change of sensitiveness is big, in case of the hydraulic gradient bigger than the standard hydraulic gradient.

Effects of micro-topography on the crown growth of Picea jezoensis under different wind conditions on Mt. Deokyu, Korea (미지형과 바람이 덕유산 가문비나무(Picea jezoensis)의 수관생장에 미치는 영향)

  • Han, Ah Reum;Jung, Jong Bin;Park, Pil Sun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.277-285
    • /
    • 2019
  • This study was conducted to understand the growth characteristics of Picea jezoensis that was one of representative subalpine species in Korea, in the light of the effects of wind and micro-topography in its habitats on Mt. Deogyu, Korea. The prevailing wind directions were southwest and west at the study sites. We randomly selected P. jezoensis (height ≥ 1.5 m) on windward, intermediate, and leeward slopes and measured diameter at breast height (DBH), height, crown length by 8 directions in upper, middle and lower sectors of the crown. We examined the micro-topography of P. jezoensis stood on and classified it into 3 types: type 1 was mounded and fully exposed to surrounding environments without neighboring trees; type 2 was somewhat wind-protected by surrounding rocks, but no neighboring vegetation; type 3 was on gentle slope or flat where P. jezoensis grew with neighboring trees or shrubs. The ratios of height to DBH, and estimated crown growth to actual crown growth (hereafter crown growth ratio) were compared among the three types of micro-topography on windward, intermediate and leeward sites. The height growth per DBH and crown growth ratio in the upper and middle crowns were the smallest on the windward site, and the highest on the leeward site (p < 0.01). The crown growth ratio on type 1 on the windward site was only 46% of that on type 3 on the leeward site. Although on the same windward slope, trees on type 1 had more deformed crown shapes than that on Type 3, showing asymmetric crown cross-sectional areas. Wind and micro-topography played critical roles on the crown growth of P. jezoensis.

Flow Regimes of Continuously Stratified Flow over a Double Mountain (두 개의 산악 위에서의 연속적으로 성층화된 흐름의 흐름 체계)

  • Han, Ji-Young;Kim, Jae-Jin;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2007
  • The flow regimes of continuously stratified flow over a double mountain and the effects of a double mountain on wave breaking, upstream blocking, and severe downslope windstorms are investigated using a mesoscale numerical model (ARPS). According to the occurrence or non-occurrence of wave breaking and upstream blocking, three different flow regimes are identified over a double mountain. Higher critical Froude numbers are required for wave breaking and upstream blocking initiation for a double mountain than for an isolated mountain. This means that the nonlinearity and blocking effect for a double mountain is larger than that for an isolated mountain. As the separation distance between two mountains decreases, the degree of flow nonlinearity increases, while the blocking effect decreases. A rapid increase of the surface horizontal velocity downwind of each mountain near the critical mountain height for wave breaking initiation indicates that severe downslope windstorms are enhanced by wave breaking. For the flow with wave breaking, the numerically calculated surface drag is much larger than theoretically calculated one because the region with the maximum negative perturbation pressure moves from the top to the downwind slope of each mountain as the internal jump propagating downwind occurs.

A Study on the Design of Rotary Mower and Its Utilization. (Rotary Mower의 제작과 그 이용에 관한 연구)

  • 최규홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3897-3920
    • /
    • 1975
  • Since the most of Korean dairy and cattle raising farms are too small to introduce western mechanized farming, it is necessary to develope small size equipments. This study has been carried to develop a rotary mower as on attachment of 8 to 10 horse powertiller which is widely spread in rural area. It will not ony be helpfull for the farmers to harvesting hay grass but also desirable to increase the power tiller utility. The protto type rotary mower designed through the fundamental investigations, has been modified and improved through the field trials, and a series of field tests has been carried to investigate its performance and economic feasibility comparing with existing vailable harvesting equipments. The results are as follows; 1. To increase the stability, two guide wheels are attached to both side of the protto type rotary mower. 2. To prevent the clinging of tall grasses, the vertical driving shafts are covered with cylindrical protectors. 3. The cutting height is adjustable in 8 steps from 2.5 to 20 centimeters by changing the length of guide wheel legs. 4. The practical Critical cutting speed were always higher than theoretical value in both case of single cutting blade and three when the cutting depth was 25 millimeter. 5. The peripheral speed of cutting blade was varied in response to the change of engine speed, mean while the peripheral speed was adequate as it was changhed from 25 to 35 meter per second when the power tiller is operated in proper working ground speed. 6. The time requirement to harvest 10 a were 88.7, 54.6 and 41.4 minutes for the first, second and third stage of ground speed respectively, and because of the difficulty of delivery, it was observed that operating with fourth stage of ground speed was not recomanendable when the grass height is taller than 90 centimeters. 7. The performance of rotary mower were 1.1-1.7, 1.4-4.0, 3.8-11.8 and 7.4-22.0 times of reciprocating mower, portable disc type cutter, hay scythe and ordinary sickle respectively. 8. When the slope exceeds, 20 degree the downward harvesting operation was impossible because of the excessive front end weight, while less than 5 degree of land slope did not effect in field operation. 9. Increased traveling spee caused higher cutting height and slight cutting failure, but seems not to effect to the gross yield, and the efficiency of cutting width were from 83 to 94 precent. 10. Tn rank of economy were rotary mower (3,2 stage operation), reciprocating mower, hay scythe, portable disc type cutter and sickle in order when the annul operation exdeeds 100 hours. From the above results, it is convinced that the protto type rotary mower is good enough to the livestock farmers as a hay harvesting equipment because of its economy, hardiness in operating and its out standing performance and hopefully it will contribute to the extension of Korean livestock farming.

  • PDF

Model Tests for Examination of Overflow Failure Mechanism on River Levee (하천제방의 월류 붕괴 메커니즘 규명을 위한 모형실험)

  • Kim, Jin-Man;Park, Min-Cheol;Moon, In-Jong;Jin, Yoon-Hwa
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.41-52
    • /
    • 2017
  • This research conducted the two types of model tests to examine the failure parameters by levee overflow, those were the pilot-scale levee (model height 0.4~0.8 m) and real scale levee (model height 1.0 m). The procedure of levee failure by overflow was succeeded to the following three steps: At first step, the local scouring on levee slope was happened and the overflow velocity was increased slowly. At second step, the enlarged scouring surface and the rapid overflow velocity were succeeded. At last, the levee section was broken totally and the overflow velocity was decreased because of the wide failure surface of levee. The levee failure angle (${\theta}$) was appeared bigger than slope failure angle of Rankine earth pressure. The enlarged levee height (H) made the faster overflow velocity (${\upsilon}$) of the levees, therefore additional tractive force was applied to it, futhermore the failure angle (${\theta}$) and failure surface (A) were enlarged. Because the sand sample for pilot-scale and real scale tests had the same diameter, the critical scouring velocity of each type was also the same, and the scouring properties were governed by variation of overflow velocity.

Stability Formula for Rakuna-IV Armoring Rubble-Mound Breakwater (사석방파제 위에 피복한 Rakuna-IV의 안정공식)

  • Suh, Kyung-Duck;Lee, Tae Hoon;Matsushita, Hiroshi;Nam, Hong Ki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.181-190
    • /
    • 2013
  • In this study, a total of 51 cases of hydraulic model tests has been conducted for various wave conditions and slope angles of breakwater to develop a stability formula for Rakuna-IV armoring a rubble-mound breakwater. The stability number of the formula is expressed as a function of relative damage, number of waves, structural slope, and surf similarity parameter. The stability formula is derived separately for plunging and surging waves, the greater of which is used. The transitional surf similarity parameter from plunging waves to surging waves is also presented. Lastly, to explain the stability of Rakuna-IV to the engineers who are familiar with the stability coefficient in the Hudson formula, the required weight of Rakuna-IV is calculated for varying significant wave height for typical plunging and surging wave conditions, which is then compared with those of the Hudson formula using several different stability coefficients.

Analysis of Berth Operation Ratio in terms of Wave Response at Busan New Port Site (부산신항역 파랑반응에 따른 부두 가동율 해석)

  • Jeong, Jae-Hyun;Lee, Hak-Seung;Lee, Joong-Woo;Yang, Sang-Yong;Jeong, Young-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.57-62
    • /
    • 2006
  • Busan New Port, under construction aiming for the hub of Northeast Asia and Partly in operation, had damaged up to 48 billion Won due to Typhoon 'maemi' in 2003. The present criteria of domestic harbor design only describes about the critical wave height with respect to the size of vessel for harbor tranquility. The berth operation ratio which represents the annual available berthing days is depending on the efficiency of cargo handling work and this depends on the motion of the moored vessel due to the wave action and the characteristics of cargo gears. The motion of moored vessel might be related not only to the wave height but also to wave period. Furthermore, the berth operation ratio relies on external forces such as currents and winds, including the characteristics of mooring system and the specification of the moored vessel. In this study we only deal with berth operation ratio in normal sea state, considering wave and current by measured data and numerical calculation. Especially we tried to evaluate the berth operation ratio for each berth adopting the variation of dredging and reclamation plan and the change of wave environment during the process of the new port construction. For better understanding and analysis of wave transformation process, we applied the steady state spectral wave model and extended mild-slope wave model to the related site. This study summarizes comparisons of harbor responses predicted by two numerical predictions obtained at Busan New port site. Field and numerical model analysis was conducted for the original port plan and the final corrected plan.

  • PDF

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Azimuthal Distribution of Daily Maximum Temperatures Observed at Sideslopes of a Grass-covered Inactive Parasitic Volcano ("Ohreum") in Jeju Island (제주도 초지피복 기생화산("오름")의 방위별 일 최고기온 분포)

  • Seo, Hee-Chul;Jeon, Seung-Jong;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • Information on daily maximum air temperature is important in predicting the status of plants and insects, but the uneven and sparse distribution of weather stations prohibits timely access to the data in regions with complex topography. Since cumulative solar irradiance plays a critical role in determining daily maximum temperature on any sloping surfaces, derivation of a quantitative relationship between cumulative solar irradiance and the resultant daily maximum temperature is a prerequisite to development of such estimation models. Air temperatures at 8 sideslope locations with similar elevation and slope angle but aspect, circumventing a cone-shaped, grass-covered parasitic volcano (c.a., 570 m diameter for the bottom circle and 90m bottom-to-top height), were measured from June to December in 2007. Daily maximum temperatures from each location were compared with the average of 8 locations (assumed to be the temperature measured at a "horizontal reference" position). The temperature deviation at all locations increased with the day of year (or sun elevation) from summer solstice to winter solstice. Averaged over the entire period, the south facing location was warmer by $1^{\circ}C$ in daily maximum temperature than "horizontal reference" and the north facing location was cooler by $0.8^{\circ}C$ than the reference, resulting in the year round average south-north temperature difference of $1.8^{\circ}C$. In November, both south and north facing slopes showed the greatest deviation of $+2.0^{\circ}C$ and $-1.3^{\circ}C$, respectively in daily maximum temperature at monthly scale. On a daily scale, the greatest deviation was +3.8 and $2.7^{\circ}C$ at the south and north slope, respectively. The cumulative solar irradiance (on the slope for 4 hours from 11:00 to 15:00 TST) explained >60% of the variance in daily maximum temperature deviations among 8 locations, suggesting a feasibility of developing an estimation model for daily maximum temperature over complex topography at landscape scales.