• Title/Summary/Keyword: Critical size effect

Search Result 425, Processing Time 0.024 seconds

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

Sample Size and Statistical Power Calculation in Genetic Association Studies

  • Hong, Eun-Pyo;Park, Ji-Wan
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • A sample size with sufficient statistical power is critical to the success of genetic association studies to detect causal genes of human complex diseases. Genome-wide association studies require much larger sample sizes to achieve an adequate statistical power. We estimated the statistical power with increasing numbers of markers analyzed and compared the sample sizes that were required in case-control studies and case-parent studies. We computed the effective sample size and statistical power using Genetic Power Calculator. An analysis using a larger number of markers requires a larger sample size. Testing a single-nucleotide polymorphism (SNP) marker requires 248 cases, while testing 500,000 SNPs and 1 million markers requires 1,206 cases and 1,255 cases, respectively, under the assumption of an odds ratio of 2, 5% disease prevalence, 5% minor allele frequency, complete linkage disequilibrium (LD), 1:1 case/control ratio, and a 5% error rate in an allelic test. Under a dominant model, a smaller sample size is required to achieve 80% power than other genetic models. We found that a much lower sample size was required with a strong effect size, common SNP, and increased LD. In addition, studying a common disease in a case-control study of a 1:4 case-control ratio is one way to achieve higher statistical power. We also found that case-parent studies require more samples than case-control studies. Although we have not covered all plausible cases in study design, the estimates of sample size and statistical power computed under various assumptions in this study may be useful to determine the sample size in designing a population-based genetic association study.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Effect of paternal folate deficiency on placental folate content and folate receptor ${\alpha}$ expression in rats

  • Kim, Hye-Won;Choi, Yun-Jung;Kim, Ki-Nam;Tamura, Tsunenobu;Chang, Nam-Soo
    • Nutrition Research and Practice
    • /
    • v.5 no.2
    • /
    • pp.112-116
    • /
    • 2011
  • We investigated the effect of paternal folate status on folate content and expression of the folate transporter folate receptor ${\alpha}$ ($FR{\alpha}$) in rat placental tissues. Rats were mated after males were fed a diet containing 0 mg of folic acid/kg of diet (paternal folate-deficient, PD) or 8 mg folic acid/kg of diet (paternal folate-supplemented, PS) for 4 weeks. At 20 days of gestation, the litter size, placental weight, and fetal weight were measured, and placental folate content (n=8/group) and expression of $FR{\alpha}$ (n=10/group) were analyzed by microbiological assay and Western blot analysis, respectively. Although there was no difference observed in litter size or fetal weight, but significant reduction (10%) in the weight of the placenta was observed in the PD group compared to that in the PS group. In the PD group, placental folate content was significantly lower (by 35%), whereas $FR{\alpha}$ expression was higher (by 130%) compared to the PS group. Our results suggest that paternal folate status plays a critical role in regulating placental folate metabolism and transport.

Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates (가황 천연고무의 인장강도에 미치는 온도의 영향)

  • Ko, Young-Chon;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2001
  • This study was related with the effect of elevated temperature on the tensile strength of edge-cut samples. There was a different tensile strength behavior of uncut samples and pre-cut samples under different test temperatures. Tensile strength of uncut sample decreases with increasing test temperature. When pro-cut size(C) is larger than critical cut size($C_{cr}$), tensile strength or pre-cut specimen at $80^{\circ}C$ is higher than that of pre-cut specimen at room temperature (RT). Test specimens under $80^{\circ}C$ condition exhibited more secondary cracks at the crack tip region compared to room temperature conditions. However, secondary cracks of pre-cut specimens are not clearly developed at $110^{\circ}C$. Differences in tensile strength induced by different test temperature seem to be responsible for the strain-induced crystallization and micro-cracking patterns.

  • PDF

Analysis of behaviour of steel beams with web openings at elevated temperatures

  • Yin, Y.Z.;Wang, Y.C.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.15-31
    • /
    • 2006
  • Beams with web openings are an attractive system for multi-storey buildings where it is always desirable to have long spans. The openings in the web of steel beams enable building services to be integrated within the constructional depth of a floor, thus reducing the total floor depth. At the same time, the increased beam depth can give high bending moment capacity, thus allowing long spans. However, almost all of the research studies on web openings have been concentrated on beam behaviour at ambient temperature. In this paper, a preliminary numerical analysis using ABAQUS is conducted to develop a general understanding of the effect of the presence of web opening on the behaviour of steel beams at elevated temperatures. It is concluded that the presence of web openings will have substantial influence on the failure temperatures of axially unrestrained beams and the opening size at the critical position in the beam is the most important factor. For axially restrained beams, the effect of web openings on the beam's large deflection behaviour and catenary force is smaller and it is the maximum opening size that will affect the beam's response at very high temperatures. However, it is possible that catenary action develops in beams with web openings at temperatures much lower than the failure temperatures of the same beam without axial restraint that are often used as the basis of current design.

Transient Response Analysis of a Control Valve for CO2 Refrigerant (CO2냉매용 제어밸브의 응답 특성)

  • Kim, Bo Hyun;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.11-16
    • /
    • 2018
  • Pilot operated control valve for $CO_2$ refrigerant is a valve that can perform various functions according to the user's intention by replacing pilot units, widely used for flow rate, pressure, and temperature control of refrigeration and air conditioning systems. In addition, $CO_2$ refrigerant, that requires high pressure and low critical temperature, can be installed and used in all positions of the refrigeration system, regardless of high or low pressure. In this paper, response characteristics are modeled and analyzed based on behavior of the main piston of the pilot-operated control valve. Although various factors influence operation of the main piston, this paper analyzes the effect of equilibrium pressure depending on valve installation position and application, and inlet and outlet orifice size of the load pressure feedback chamber to determine feedback characteristics of the main piston. As a result, it was possible to quantitatively analyze the effect of change in equilibrium and load pressure feedback chamber flow path size on the change in main piston dynamic and static characteristics.

A Case of Bilateral Gynecomastia Associated with Isoniazid (Isoniazid를 포함한 항결핵약제 투여 후 발생한 여성형 유방 증례 1예)

  • Heo, Eun Young;Jeong, Ina;Lee, Jae Seok;Lee, Chang Hoon;Chung, Hee Soon;Kim, Deog Kyeom
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.4
    • /
    • pp.308-312
    • /
    • 2008
  • Gynecomastia is a benign enlargement of the male breast attributable to proliferation of the ductal elements. Gynecomastia has been rarely reported as an adverse effect of isoniazid therapy. We report the case of a 35-year-old man who was prescribed with isoniazid, rifampicin, ethambutol and pyrazinamide to treat pulmonary and lymphatic tuberculosis. After five months of treatment, the patient complained of painful engorgement in the bilateral breasts and the presence of male gynecomastia was confirmed with a physical examination and radiographical methods. The serum level of estradiol was also increased. Common causes of male gynecomastia were excluded through history taking and the laboratory findings. The anti-TB drugs were changed to a second line regimen due to radiographical progression and the intolerance of the patient to gynecomastia. Gynecomastia was relieved very slowly and a tender subareolar palpable mass decreased in size and consistency over five-month period after stopping the probable causative drug, isoniazid. From a review of the literature, gynecomastia has been shown to be a side effect of treatment with first line anti-tuberculosis drugs, and especially with isoniazid. We report the rare case.

Effects of the size of Mg powder on the formation of MgB2 and the superconducting properties

  • Kim, D.N.;Jun, B.H.;Park, S.D.;Kim, C.J.;Park, H.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.9-14
    • /
    • 2016
  • The effect of the size and shape of magnesium(Mg) powder on the formation of $MgB_2$ and the critical current density($J_{c,}$) of $MgB_2$ bulk was studied. As a precursor for the formation of $MgB_2$, Mg and $MgB_4$ powder, which was synthesized through the reaction of boron (B) with Mg powders, was used. $MgB_4$ was mixed with Mg powders of various sizes, pressed into pellets and heat-treated at $650^{\circ}C-750^{\circ}C$ in flowing argon gas. The XRD analysis of the heat-treated $MgB_2$ samples showed that the volume fraction of $MgB_2$ was the highest as 92.74 % when spherical Mg powder with an average size of $25.7{\mu}m$ was used, whereas the volume fraction was the lowest as 79.64 % when plate-like Mg powder with a size of $34.1{\mu}m$ was used. The superconducting transition temperature ($T_c$) of $MgB_2$ was not sensitive to the characteristics of the Mg powders used. All of the prepared $MgB_2$ samples showed a high $T_c$ of 38.3 K and a small superconducting transition width of 0.2 K-0.5 K. $J_c$ (5 K and 1 T) of $MgB_2$ was the highest as $3.93{\times}10^4A/cm^2$ when spherical Mg powder with a size of $25.7{\mu}m$ was used, whereas $J_c$ was the lowest as $2.18{\times}10^4A/cm^2$when plate-like Mg powder with a size of $34.1{\mu}m$ was used. The relationship between the $J_c$ of $MgB_2$ and the characteristics of the Mg powders used was explained in terms of the volume fraction of $MgB_2$ and the apparent density of the $MgB_2$ pellets.

A Study of Friction in Microfoming Using Ring Compression Tests and Finite Element Analysis (링 압축시험과 유한요소해석을 이용한 미세성형 공정에서의 마찰특성에 관한 연구)

  • Kim, Hong-Seok;Kim, Geung-Rok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1471-1478
    • /
    • 2010
  • Microforming processes have recently attracted considerable attention from industry and academia since they enable the production of microscale parts using various materials at a high production rate, minimize material loss, and provide parts with excellent mechanical properties. However, for successful development and applications of the microforming process it is critical to take the tribological size effect into consideration because previous studies have shown that traditional friction models for macroscale forming generate significantly erroneous results in the case of microforming. In this paper, we performed scaled ring compression experiments to investigate the tribological size effect of aluminum and brass materials in microforming. The sensitivity of the interfacial friction to the deformation characteristics of the ring was quantitatively analyzed by the finite element analysis. In addition, a friction model based on slip line field and upper boundary techniques was used to theoretically explain the friction mechanism in microforming.