• Title/Summary/Keyword: Critical pressure ratio

Search Result 239, Processing Time 0.034 seconds

Effects of Combustor Stages on M501J Gas Turbine Combustion (M501J 가스터빈 연소기 단별 연료비율이 연소상태에 미치는 영향 고찰)

  • Yu, Won-Ju;Chung, Jin-Do
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Most of gas turbine combined cycle power plants are located in urban areas to provide peak load and district heating. However, NOx(nitrogen oxides) of exhaust gas emission from the power plants cause additional fine dust and thus it has negative impact on the urban environment. Although DLN(dry low NOx) and multi-stage combustors have been widely applied to solve this problem, they have another critical problem of damages to combustors and turbine components due to combustion dynamic pressure. In this study, the effect of different fuel ratio on NOx emission and pressure fluctuation was investigated regarding two variable conditions; combustor stages and power output on M501J gas turbine.

Minimum Safety Factor for Evaluation of Critical Buckling Pressure of Zirconium Alloy Tube (지르코늄 합금 관의 임계좌굴 압력 산정을 위한 최소안전율)

  • Kim, Hyung-Kyu;Kim, Jae-Yong;Yoon, Kyung-Ho;Lee, Young-Ho;Lee, Kang-Hee;Kang, Heung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • We consider the uncertainty in the elastic buckling formula for a thin tube. We take into account the measurement uncertainty of Young's modulus and Poisson's ratio and the tolerance of the tube thickness and diameter. Elastic buckling must be prohibited for a thin tube such as a nuclear fuel rod that must satisfy a self-stand criterion. Since the predicted critical buckling pressure overestimated that found in the experiment, the determination of the minimum safety factor is crucial. The uncertainty in each parameter (i.e., Young's modulus, Poisson's ratio, thickness, and diameter) is mutually independent, so the safety factor is evaluated as the sum of the inverse of each uncertainty. We found that the thickness variation greatly affects the uncertainty. The minimum safety factor of a thin tube of Zirconium alloy is evaluated as 1.547 for a thickness of 0.87 mm and 3.487 for a thickness of 0.254 mm.

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • The flow of combustor in scramjet engine is supersonic speed. So residence time and mixing ratio are very important factors for efficient combustion. This study used open cavity on fuel/air mixing model and laser schlieren was carried out to investigate flow characteristics around a jet orifice and a cavity. A source of illumination has 10 ns endurance time so it can observe unsteady flow characteristics efficiently. Pressure was measured by varying momentum flux ratio. And the change of critical ignition point was observed to change of momentum flux ratio.

  • PDF

Effect of Suction Temperature and Compressor Frequency on Oil Circulation Ratio in a $CO_2$ Refrigeration System ($CO_2$ 냉동시스템에서 압축기의 흡입온도와 운전주파수가 오일 순환량에 미치는 영향)

  • Kim, Kyung-Jae;Lee, Ik-Soo;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.893-898
    • /
    • 2009
  • The quantity of discharged oil from a compressor is one of the most important issues for proper operation of refrigeration system. If the oil is increased in the system not only pressure drop is increased in other components, such as evaporator and gas cooler but also heat transfer coefficient in the heat exchangers is decreased. In addition, the lack of oil in the compressor may cause a critical of the system failure. In this study, one stage single rotary compressor is used for measuring oil circulation ratio(OCR). Carbon dioxide and PAG oil are used as refrigerant and lubricant. Using a U-tube densimeter, mixture density is measured. Characteristics of oil circulation ratio have been investigated for $CO_2$ rotary compressor in the range of operation frequency 45 Hz to 63 Hz and the suction temperature range of $0^{\circ}C$ to $15^{\circ}C$. The results obtained indicate that the oil circulation ratio is increased as the suction temperature or compressor operating frequency is increased.

  • PDF

Characteristics of Undrained Static Shear Behavior for Sand Due to Aging Effect (Aging 효과에 따른 모래의 비배수 정적전단거동 특성)

  • 김영수;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.137-150
    • /
    • 2004
  • Aging effect of sands showed insignificant result in comparison with that of clay, so that it has not been studied so far. But, as penetration resistance increase has been observed with the lapse of time after deposition and disturbance, aging effect of sands has been actively investigated by field tests, and recently many researchers are performing not oかy field tests but also laboratory tests on sands, so aging effects of sands have been also examined by laboratory tests. In this study, to observe the aging effect of undrained static shear behavior for Nak-Dong River sand, undrained static triaxial tests were performed with changing relative density$(D_r)$, consolidation stress ratio$(K_c)$, and consolidation time. These tests showed that modulus within elastic section increased as consolidation time increased, and in addition, phase transformation point strength$(S_{PT})$ and critical stress ratio point strength $(S_{CSR})$ also increased. But pore water pressure ratio$(u/{p_c}')$ decreased as consolidation time increased, so with this various result, aging effect of static shear for sands can be observed as well.

Effect of Fuel Equivalence Ratio on Scramjet-to-Ramjet Mode Transition (스크램-램제트 모드 천이에 미치는 연료 당량비의 영향)

  • Ha, Jeong Ho;Yoon, Youngbin;Ladeinde, Foluso;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.45-51
    • /
    • 2018
  • The generation mechanism of NAR is not yet understood. In the present study, an in-depth analysis of the computational results previously obtained by the authors is conducted to investigate the flow mechanism responsible for NAR. A theoretical analysis has also been performed to understand the gas dynamic features during transition from scramjet to ramjet mode. It is known that there exists a critical value of the fuel equivalence ratio at which the flow states at the inlet of isolator remain unchanged. An increase in the equivalence ratio over the critical value leads to a sudden change in the static pressure and the Mach number at the inlet of the isolator, which is responsible for the generation of NAR.

Flutter performance of central-slotted plate at large angles of attack

  • Tang, Haojun;Li, Yongle;Chen, Xinzhong;Shum, K.M.;Liao, Haili
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.447-464
    • /
    • 2017
  • The flutter instability is one of the most important themes need to be carefully investigated in the design of long-span bridges. This study takes the central-slotted ideal thin flat plate as an object, and examines the characteristics of unsteady surface pressures of stationary and vibrating cross sections based on computational fluid dynamics (CFD) simulations. The flutter derivatives are extracted from the surface pressure distribution and the critical flutter wind speed of a long span suspension bridge is then calculated. The influences of angle of attack and the slot ratio on the flutter performance of central-slotted plate are investigated. The results show that the critical flutter wind speed reduces with increase in angle of attack. At lower angles of attack where the plate shows the characteristics of a streamlined cross-section, the existence of central slot can improve the critical flutter wind speed. On the other hand, at larger angles of attack, where the plate becomes a bluff body, the existence of central slot further reduces the flutter performance.

Seismic performances of three- and four-sided box culverts: A comparative study

  • Sun, Qiangqiang;Peng, Da;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.49-63
    • /
    • 2020
  • Studying the critical response characteristics of box culverts with diverse geometrical configurations under seismic excitations is a necessary step to develop a reasonable design method. In this work, a numerical parametric study is conducted on various soil-culvert systems, aiming to highlight the critical difference in the seismic performances between three- and four-sided culverts. Two-dimensional numerical models consider a variety of burial depths, flexibility ratios and foundation widths, assuming a visco-elastic soil condition, which permits to compare with the analytical solutions and previous studies. The results show that flexible three-sided culverts at a shallow depth considerably amplify the spectral acceleration and Arias intensity. Larger racking deformation and rocking rotation are also predicted for the three-sided culverts, but the bottom slab influence decreases with increasing burial depth and foundation width. The bottom slab combined with the burial depth and structural stiffness also significantly influences the magnitude and distribution of the dynamic earth pressure. The findings of this work shed light on the critical role of the bottom slab in the seismic responses of box culverts and may have a certain reference value for the preliminary seismic design using R-F relation.

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.

A Study of Particle-Initiated Breakdown Characteristics on a Spacer Surface for $SF_6$ GIS ($SF_6$ GIS용 스페이서 표면에서의 파티클에 의한 절연파괴 특성연구)

  • Kim, Jae-Ho;Lee, Yong-Gil;Kim, Dong-Eui;Lee, Sae-Hun;Kim, Jung-Dal
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1536-1539
    • /
    • 1994
  • The influence due to metallic particle contaminated on spacer surface is remarkable in the decreasing of dielectric strength in $SF_6$ GIS. In relation with this problem, We studied, AC flash-over voltage characteristics and breakdown mechanism are investigated under metallic particle initiated condition in $SF_6$ gas by varying the particle position, particle shape with a plane-plane electrode. The main results arc as follows 1. The small amount of the metallic particle in the gap do not make flash-over voltage to be influence, but the significant decrease of th flash-overed voltage is result in case of the big and long size of the metallic paraticle. 2. Influence of the flash-over voltage are lowest in the mid and are highest in the electrode of metallic particle position. 3. In case of the initiated metallie particle, The more the pressure are high, the more the recluced ratio of flash-over voltage are high. 4. The metallic particle shape which results in the reduced flash-over voltage forced the critical pressure to move in to the region of low pressure. 5. The existance of the metallic particle on the upper electrode side and high pressure make the decreasing ratio of flash-over voltage bigger than that of the ground side electrode.

  • PDF