• Title/Summary/Keyword: Critical moisture content

Search Result 83, Processing Time 0.026 seconds

Critical Moisture and Pore Structure of Clay Based Consolidated Body (점토계 고형화소지의 임계함수율과 기공구조)

  • 이기강;박천주;김유택;김석범;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.528-534
    • /
    • 1997
  • There have been many studies on the preparation of slip, forming and drying in the slip casting process. However, is has not been yet on the rheological properties of consolidated body which largely affect on the workability. It was investugated that the rheological properties of the consolidated bodies formed by slip casting in the form of cakes from well dispersed(slip C) and weakly agglomerated slip(slip B) in the clay and clay-fly ash systems. The state of dispersion of slip was found to affected the critical moisture content which was largely affected by the pore and moisture distribution of the consolidated body. The cake C show lower critical moisture content than cake B in the clay system. However, the cake B gives lower critical moisture content than cake C in the clay-fly ash system.

  • PDF

Physicochemical Properties of Rice Extrudate with Added Ginger Powder by the Response Surface Regression Analysis (반응 표면 분석에 의한 생강 분말을 첨가한 쌀 압출 성형물의 이화학적 성질)

  • 고광진
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.178-188
    • /
    • 1993
  • This research was attempted to investigate changes in physicochemical properties of rice extrudate with added ginger powder extruded by single screw extruder. Graphic three dimensional analysis on response surface regression was used to evaluate effects of extrusion variables on quality factors of the extrudate according to two independent variables, ginger consent 0∼12%, moisture content 14∼26%. The summarized results are as follows : 1) Regarding proximate composition of rice extrudate with added ginger powder, as ginger powder content of raw material Increased, crude tat, crude protein, crude ash and crude fiber increased, while soluble nitrogen free extract decreased. 2) Graphic three dimensional analysis on response surface regression was conducted for each dependent variable which revealed statistically significant relationship with independent variables, 0∼120A ginger and 14∼26% moisture content. Expansion ratio had a critical point as moisture content changed. As ginger and moisture content Increased, bulk density, break strength and water absorption Index Increased, while water solubility Index decreased. The predicted maximum degree of gelatinization in 6.15% ginger and 15.56% moisture content is 88.27%, and lightness decreased as ginger content Increased. According to the microstructure for the cross section of extrudate obsorbed with image analyzer, air cell number and perimeter revealed saddle point, meanwhile total area and fractarea of air cell had critical points as moisture content changed. In view of the results, quality of rice extrudate with added ginger powder was optimum when rice flour was fed to the extruder with 2∼7% singer powder and 15∼20% moisture content.

  • PDF

Dielectric Properties of Sardine-Starch Paste at Low Moisture Content 2. Effect of Starch Contents and Temperatures (정어리 마쇄육의 저수분에서의 유전적 특성 2. 전분함량과 온도에 따른 유전특성)

  • LEE Byeong-Ho;KIM Chang-Yang;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.247-254
    • /
    • 1983
  • In previous paper (Lee and Kim, 1983) the effect of moisture level and frequency on dielectric properties of sardine starch paste was mentioned. The effect of temperature and starch content of the paste upon dielectric permittivity and activation energy was discussed in this report. Addition of starch affected on dielectric property. Increases of starch in the mixtures resulted in higher complex permittivity and lower critical moisture content (hc) as shown in the mixtures with $20\%$ and $50\%$ starch which were ${\varepsilon}^{\ast}=2.97+j0.36,\;hc=8.0\%;\;{\varepsilon}^{\ast}=3.54+j0.44,\;hc=7.8\%$, respectively while being ${\varepsilon}^{\ast}=2.73+j0.29,\;hc=8.4\%$ for the plain ground sardine meat. When temperature was raised the complex permittivity tended to increase at above the critical moisture content in all cases. The activation energies for plain ground meat and $30\%$ starch added mixture at below the critical moisture of $8.4\%$ were 15.44 kcal/mol and 13.86 kcal/mol while those at the moisture of $12.2\%$ were 10.27 kcal/mol and 9.31 kcal/mol, respectively.

  • PDF

Study on the Drying Characteristics of Wild Vegetables (산채의 건조 특성에 관한 연구)

  • Rhim, Jong-Whan;Hwang, Keum-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.358-364
    • /
    • 1995
  • In order to determine the moisture content level for safe storage of wild vegetables, drying characteristics and water vapor sorption characteristics of four vegetables, i.e., zucchini slice, sweet potato stem, taro stem, and platycodon, were investigated. The drying curves of these vegetables were consisted of three characteristic stages which were the initial settling down period, the constant drying rate period, and the falling drying rate period. And the falling rate period of the vegetables showed 2 or 3 parts of falling rate. All of the falling rate curves of the vegetables showed upwardly convex shape which is known as a characteristic pattern for the drying of fibrous food materials. The critical moisture contents of the vegetables were $8.29{\sim}9.75,\;10.40{\sim}15.08,\;9.51{\sim}14.52\;and\;3.29{\sim}3.56g\;H_2O/g$ dry solids for zucchini slice, sweet potato stem, taro stem, and platycodon, respectively. Activation energy values of drying rate during falling rate period were 2.30, 2.11, 4.97, and 2.80 kcal/mol for zucchini slice, sweet potato stem, taro stem, and platycodon respectively. The BET monolayer moisture contents of the vegetables were $10.05{\sim}13.59,\;9.49{\sim}12.69,\;9.50{\sim}16.48\;and\;5.01{\sim}5.44g\;H_2O/g$ dry solids for zucchini slice, sweet potato stem, taro stem, and platycodon, respectively. And these values were found to be very compatible with the values of the critical moisture content. Consequently, it was found that the moisture of these vegetables should be removed below the BET monolayer moisture content or below the critical moisture content for the long term storage.

  • PDF

Dielectric Properties of Sardine-Starch Paste at Low Moisture Contents 1, Effect of Moisture Content and Frequency (정어리 마쇄육의 저수분에서의 유전특성 1. 수분함량과 주파업에 따른 유전특성)

  • LEE Byeong-Ho;KIM Chang-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.125-132
    • /
    • 1983
  • Dielectric properties of sardine-starch paste with moisture content of 4 to $13\%$ were investigated as functions of moisture and frequency. And the effects of the levels of fat and starch of the mixtures upon dielectric permittivity, critical moisture, were also mentioned. In addition, a theoretical prediction of frequency dependence of dielectric constant which was computed by the lumped circuit of two layer condenser model was evaluated. For the preparation of sardine-starch paste, comminuted sardine meat was washed thoroughly several times in chilled water by soaking and decanting, and finally centrifuged. This procedure was extended longer to provide a low fat sample. The centrifuged meat was mixed with adequate amounts of starch and salt, and ground for 25 minutes in a stone mortar, moulded in the form of disk with 7cm diameter and 1.2cm thickness and then freeze dried. Dried meat disks were cut off for the size of 5.5cm diameter and 1.0cm thickness and their moisture contents were controlled in humidified desiccators with saturated solutions. Dielectric constants of sardine-starch paste tended to decrease frequency was increased showing a critical charge at the moisture called critical moisture content. In case of the sample with $20\%$ starch and $2\%$ salt an average complex permittivity($\epsilon^{\ast}$) at 7 to $8\%$ morsture as the critical moisture content was presented; $\epsilon^{\ast}$=3.37+j 0.39 at 0.1 MHz, $\epsilon^{\ast}$=2.54+j 0.19 at 15 MHz, and $\epsilon^{\ast}$=2.15+j 0.08 at 1.8 GHz, respectively. The theoretically obtained complex permittivity values from the two layer condoner model were in close agreement with these actual measurements under the same conditions, that appeared as $\epsilon^{\ast}$=2.53+i 0.09 at 0.1 MHz and $\epsilon^{\ast}$=2.28+j 0.06 at 15 MHz, respectively. The fast level of the mixture also revealed an influence on dielectric property that defatted neat with $1.0\%$ fat showed a higher hc and $\epsilon^{\ast}$ value than the meat with $4.8\%$ fat. Complex permittivity being related to the moisture level remained nearly unchanged or slightly changed at the moisture range of 4 to $8\%$ but was dispersed widely at higher moisture contents.

  • PDF

Modeling for Drying of Thin Layer of Native Cassava Starch in Tray Dryer

  • Aviara, Ndubisi A.;Igbeka, Joseph C.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.342-356
    • /
    • 2016
  • Purpose: The drying of a thin layer of native cassava starch in a tray dryer was modeled to establish an equation for predicting the drying behavior under given conditions. Methods: Drying tests were performed using samples of native cassava starch over a temperature range of $40-60^{\circ}C$. We investigated the variation in the drying time, dynamic equilibrium moisture content, drying rate period, critical moisture content, and effective diffusivity of the starch with temperature. The starch diffusion coefficient and drying activation energy were determined. A modification of the model developed by Hii et al. was devised and tested alongside fourteen other models. Results: For starch with an initial moisture content of 82% (db), the drying time and dynamic equilibrium moisture content decreased as the temperature increased. The constant drying rate phase preceded the falling rate phase between $40-55^{\circ}C$. Drying at $60^{\circ}C$ occurred only in the falling rate phase. The critical moisture content was observed in the $40-55^{\circ}C$ range and increased with the temperature. The effective diffusivity of the starch increased as the drying temperature increased from 40 to $60^{\circ}C$. The modified Hii et al. model produced randomized residual plots, the highest $R^2$, and the lowest standard error of estimates. Conclusions: Drying time decreased linearly with an increase in the temperature, while the decrease in the moisture content was linear between $40-55^{\circ}C$. The constant drying rate phase occurred without any period of induction over a temperature range of $40-55^{\circ}C$ prior to the falling rate period, while drying at $60^{\circ}C$ took place only in the falling rate phase. The effective diffusivity had an Arrhenius relationship with the temperature. The modified Hii et al. model proved to be optimum for predicting the drying behavior of the starch in the tray dryer.

Verification of the Validity of Moisture Transfer Model for Prediction of Indoor Moisture Generation Rate (실내 수증기 발생량 예측을 위한 습기 전달 모델의 검증에 관한 연구)

  • Lee, Dong-Kweon;Kim, Eui-Jong;Choi, Won-Ki;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 2006
  • Moisture in a building is one of the most important variables influencing building performance, human health, and comfort of indoor environment. However, there are still lacks in the knowledge of understanding the moisture problem well and controlling moisture. Accordingly, in order to provide the fundamental data to control moisture contents in the indoor air, this study was to predict moisture contents transferred through building envelopes and indoor moisture generation rate. Moisture transfer model was made by physical relations in each node, and the indoor moisture generation rate was gained by comparing the model with experimental analyses. From the study, we found out that moisture generation rate was critical and day-periodic, so that we predicted the indoor moisture content by substituting the constant value gained from the average in a day for the moisture generation rate.

Physical Properties of Corrugated Fiberboard and Estimation of Box Compression Strength with Changes of Relative Humidity (상대습도에 따른 농산물 포장용 골판지의 원지의 물리적 특성 변화 및 상자압축강도의 예측)

  • Jo, Jung-Youn;Shin, Jun-Sub;Kim, Jong-Kyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • Determination of safety factor of corrugated fiberboard boxes used for agricultural products is very complicated process due to nature of living products. Moisture content is one of the most critical factors to determine overall physical strength of paper, so its influences on strength properties of corrugated board made from different raw materials must be quantified. The results obtained from the study were summarized as follows; 1. Results show a detrimental effect on bursting strength and compressive strength of liners with increasing relative humidity of environment and moisture content of liners. 2. The relevance of equilibrium moisture content at varying relative humidity levels was proved and its relationship was used as an important factor to estimate box compression strength. 3. Test results was statistically used for establish the relationship between relative humidity and moisture content of liners. Estimated compression strength of boxes at varying moisture content was similar to results of theoretical equations such as Kellicutt's. Further study could be carried out in order to determine a optimum safety factors of various corrugated board boxes for agricultural products.

  • PDF

Behavior of geotextile reinforced flyash + clay-mix by laboratory evaluation

  • Vashi, Jigisha M.;Desai, Atul K.;Solanki, Chandresh H.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.331-342
    • /
    • 2013
  • The major factors that control the performance of reinforced soil structures is the interaction between the soil and the reinforcement. Thus it is necessary to obtain the accurate bond parameters to be used in the design of these structures. To evaluate the behavior of flyash + clay soil reinforced with a woven geotextile, 36 Unconsolidated-Undrained (UU) and 12 reinforced Consolidated-Undrainrained (CU) triaxial compression tests were conducted. The moisture content of soil during remolding, confining pressures and arrangement of geotextile layers were all varied so that the behavior of the sample could be examined. The stress strain patterns, drainage, modulus of deformation, effect of confinement pressures, effects of moisture content have been evaluated. The impact of moisture content in flyash + clay backfills on critical shear parameters was also studied to recommend placement moisture for compaction to MDD. The results indicate that geotextile reinforced flyash + clay backfill might be a viable alternative in reinforced soil structures if good-quality granular backfill material is not readily available.

Quality Measurement of Rice - Mixture Extrudate by the Response Surface Regression Analysis (반응표면분석에 의한 쌀 압출성형물의 품질평가)

  • 고광진;김준평
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.1 no.3
    • /
    • pp.305-311
    • /
    • 1991
  • The study was designed to investigate overall acceptability of rice extrudate with added ginseng flour extruded by single screw extruder. Graphic three dimension analysis on response surface regression was conducted for overall acceptability evaluated by balanced incomplete block design. Overall acceptability, which formed a saddle point, increased as moisture content increased at lower die temperature, and as moisture content decreased at higher die temperature. Critical values of each variable which indicated optimum response are 5.0% ginseng content, 17.8% moisture content and 104.6$^{\circ}C$ die temperature, and optimum inferred score of overall acceptability is 59.6 and 90. Key words: extrdate, overall acceptability, response surface regression analysis, balanced incomplete block method.

  • PDF