• Title/Summary/Keyword: Critical materials

Search Result 2,479, Processing Time 0.029 seconds

Microstructural Observation of Multi-coated YBCO Films Prepared by TFA-MOD (TFA-MOD법으로 제조된 다층 YBCO 박막의 미세구조 관찰)

  • Jang, Seok-Hern;Lim, Jun-Hyung;Lee, Chang-Min;Hwang, Soo-Min;Choi, Jun-Hyuk;Shim, Jong-Hyun;Joo, Jin-Ho;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.167-172
    • /
    • 2008
  • We fabricated $YBa_2Cu_3O_{7-x}$(YBCO) films on (00l) $LaAlO_3$ substrates prepared by metal organic deposition(MOD) method using trifluoroacetate(TFA) solution. The films with various thicknesses were prepared by repeating the dip-coating and calcining processes. The effects of film thickness on phase formation, microstructures, and critical properties were evaluated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The microstructure and resultant critical current($I_C$) and critical current density($J_C$) varied remarkably with film thickness: The ($I_C$) value increased from 39 to 160 A/cm-width as the number of coatings increased from one to four, while the corresponding $J_C$ was measured to be in the range of $0.84-1.21\;MA/cm^2$. Both the $I_C$ and $J_C$ decreased when an additional coating was applied due to microstructural degradation, indicating that the optimum thickness is in the range of $1.1-1.8\;{\mu}m$. The possible cause for the decrease in the $I_C$ and $J_C$ value for film thicker than $1.8\;{\mu}m$ include non-uniform thickness, increased surface roughness, and the poor formability of the YBCO phase and texture arising from the insufficient heat treatment time with respect to the increased thickness.

  • PDF

Comparison of in-situ $MgB_2$ Superconducting Properties Under Different Annealing Environment (열처리조건 변화에 따른 in-situ $MgB_2$ 초전도 특성 비교)

  • Chung, K.C.;Sinha, B. B.;Chang, S.H.;Kim, J.H.;Dou, S. X.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.116-121
    • /
    • 2012
  • Effect of mixed gas and additional Mg powder in an annealing process of the $MgB_2$ is investigated. Four different type of samples were prepared, each in different annealing environment of Ar, $Ar+4%H_2$, Ar with Mg powder and $Ar+4%H_2$ with Mg powder. Different annealing environment did not affect the electron-phonon interaction which is reflected from the same superconducting transition of 36.6 K for all samples. The reducing effect of hydrogen is clearly depicted from the presence of excess Mg in sample synthesized in $Ar+4%H_2$ gas implying the reduced rate of reaction between Mg and B. This has manifested itself in terms of slightly increased high-field critical current density of the sample. In contrast, the sample synthesized in $Ar+4%H_2$ with Mg powder, has shown overall enhancement in the superconducting properties as presented by higher diamagnetic saturation and critical current density.

Development and fabrication of multi-filamentary Bi(2223)/Ag jointed tape (Bi(2223)/Ag 다심 초전도 접합선재의 제조)

  • 김규태;김정호;김호진;이동욱;주진호;나완수
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.172-175
    • /
    • 2003
  • Critical current ratio and n-value of Bi(2223)/Ag superconducting joint tape were measured as a function of uniaxial pressure. In the superconducting joint method, MM and MSM joint were used ; MM joint is direct connection of two -multi filamentary tapes, and MSM is connection of them by using a single -filamentary tape. It was observed that the critical current ratio(CCR) for jointed tapes was not dependent on the uniaxial pressure but joining methods. The n-value of jointed tapes has similar trends with that of the CCR. Especially, double MSM joint showed the highest electrical properties as 63.4-76.0%(CCR) and 3.5-5.1 (n-value). It is considered that the improvements are due to the better inter connections of multifilaments by two single filamentary tapes on both sides.

  • PDF

Investigation of Galling In Forming Galvanized Steel Sheet

  • Altan, Taylan;Kardes, Nimet;Kim, Hyunok
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The major purpose of the present study is to evaluate the performance of various galvanized (GI) or galvannealed (GA) mild steels and AHSS in stamping applications. Finite Element Analysis (FEA) of selected stamping operations was conducted to estimate the critical pressure boundary conditions that exist in practice. Using this information, laboratory tribotests, e.g. Twist Compression (TCT), Deep Drawing (DDT) and Strip Drawing (SDT) Tests, were developed to evaluate the performance of selected lubricants and die materials/coatings in forming galvanized steels of interest. The sheet materials investigated included mild steels and AHSS (e.g. DP600 GI/GA, DP780 GI/GA, TRIP780 GA and DP980 GI/GA). Experimental results showed that galvanized material resulted in more galling, while galvannealed material showed more powdering and flaking. The surface roughness and chemical composition of galvanized sheet materials affected the severity of galling under the same testing conditions, i.e. lubricants and die materials/coatings. The results of this study helped to determine the critical interface pressure that initiates lubricant failure and galling in stamping selected galvanized sheet materials. Thus, to prevent or postpone the critical interface conditions, the results of this study can be used to select the optimum combination of galvanized sheet, die material, die coating and lubricant for forming structural automotive components.

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

Effect of the Initial Microstructure of Low Temperature Superconducting Monowire on Critical Current Density (초기 미세조직에 따른 저온 초전도 모노선재의 임계전류밀도 분석)

  • Kim, H.R.;Oh, Y.S.;Kim, S.J.;Lee, H.W.;Kim, J.H.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Increasing the critical current density of superconducting wire is one of the difficult challenges in the field of superconductivity. It is well known that the higher volume fraction of uniformly dispersed α-Ti is able to enhance the critical current density of superconducting material NbTi because α-Ti serves as a flux pinning center. The volume fraction of α-Ti highly depends on the grain size of NbTi because α-Ti precipitates at the grain boundaries or triple points. For this purpose, we investigated the effect of initial microstructures of NbTi obtained from hot rolling in various temperature conditions on the critical current density. In addition, subsequent heat treatment was assigned to precipitate α-Ti and groove rolling/cold drawing was adopted to produce a wire with a diameter of about 1.0 mm. It was observed that the band structure was formed after hot rolling at 500~600℃. It was also found that the volume fraction of α-Ti after hot rolling at 500~600℃ was higher and it led to the highest critical current density.

Vibration Analysis and Critical Speeds of Rotating Polar Orthoropic Disks (극직교 이방성 회전원판의 진동특성 및 임계속도)

  • Koo, Kyo-Nam;Han, Jae-Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.337-340
    • /
    • 2005
  • Rotating annular disks are widely used in data storage devices such as CDs, DVDs(digital versatile disks), and HDs(hard disks). Higher data transfer rate in data storage disks could not be achieved by polycarbonate disks in the present market. The problem can be solved by applying the fiber-reinforce composite materials to the disks. In this paper, an application of composite materials to rotating disks is proposed to increase the critical speed. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating composite by the Galerkin method. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

  • PDF

Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions

  • Akgoz, Bekir
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.133-142
    • /
    • 2019
  • In the present study, microstructure-dependent static stability analysis of inhomogeneous tapered micro-columns is performed. It is considered that the micro column is made of functionally graded materials and has a variable cross-section. The material and geometrical properties of micro column vary continuously throughout the axial direction. Euler-Bernoulli beam and modified couple stress theories are used to model the nonhomogeneous micro column with variable cross section. Rayleigh-Ritz solution method is implemented to obtain the critical buckling loads for various parameters. A detailed parametric study is performed to examine the influences of taper ratio, material gradation, length scale parameter, and boundary conditions. The validity of the present results is demonstrated by comparing them with some related results available in the literature. It can be emphasized that the size-dependency on the critical buckling loads is more prominent for bigger length scale parameter-to-thickness ratio and changes in the material gradation and taper ratio affect significantly the values of critical buckling loads.

Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River (만곡하천의 자갈하상재료 분포에 따른 한계수류력 평가)

  • Shin, Seung-Sook;Park, Sang-Deok;Lee, Seung-Kyu;Ji, Min-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.151-163
    • /
    • 2012
  • The distribution of gravel-bed materials in mountainous river is formed by the process of deposition and transportation of sediment responding to stream power of the latest flood that is over the certain scale. The particle size of bed material was surveyed in the longitudinal points of river and detail points of a specific meandering section and used to estimate the critical velocity and stream power. Yang's critical unit stream power and Bagnold's critical stream power for gravel-bed materials increased with the distance from downstream to upstream. Dimensionless shear stress based on the designed flood discharge in Shields diagram was evaluated that the gravel-bed materials in most survey points may be transported as form of bedload. The mean diameter in the meandering section was the biggest size in first water impingement point of inflow water from upstream and the second big size in second water impingement point by reflection flow. The mean diameters were relatively the small sizes in points right after water impingement. The range of mean critical velocity was 0.77~2.60 m/s and critical unit stream power was big greatly in first water impingement point. The distribution of critical stream power, range of 7~171 $W/m^2$, was shown that variation in longitudinal section was more obvious than that of cross section and estimated that critical stream power may be affected greatly in first and second water impingement point.

A softening hyperelastic model and simulation of the failure of granular materials

  • Chang, Jiangfang;Chu, Xihua;Xu, Yuanjie
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.335-353
    • /
    • 2014
  • The softening hyperelastic model based on the strain energy limitation is of clear concepts and simple forms to describe the failure of materials. In this study, a linear and a nonlinear softening hyperelastic model are proposed to characterize the deformation and the failure in granular materials by introducing a softening function into the shear part of the strain energy. A method to determine material parameters introduced in the models is suggested. Based on the proposed models the numerical examples focus on bearing capacity and strain localization of granular materials. Compared with Volokh softening hyperelasticity and classical Mohr-Coulomb plasticity, our proposed models are able to capture the typical characters of granular materials such as the strain softening and the critical state. In addition, the issue of mesh dependency of the proposed models is investigated.