• 제목/요약/키워드: Critical height

검색결과 453건 처리시간 0.028초

강우침투에 따른 화강풍화토 사면의 얕은파괴 특성 (Shallow Failure Characteristics of Weathered Granite Soil Slope in accordance with the Rainfall Infiltration)

  • 김선학
    • 한국산학기술학회논문지
    • /
    • 제10권10호
    • /
    • pp.2810-2818
    • /
    • 2009
  • 본 연구는 화강풍화토로 구성된 절토사면에서 얕은파괴의 특성을 규명하고자 우리나라의 강우특성에 따른 한계투수계수를 산정하고, 국내에 분포하는 화강풍화토의 대표적 물성을 기준으로 절토사면의 파괴면까지의 수평거리, 사면의 경사각, 사면높이 그리고 강우로 인한 포화깊이 등에 따른 안정해석을 수행하여 그 결과를 분석하였다. 한계투수계수를 분석한 결과 국내의 지역별 강우특성을 고려한 최대 한계투수계수가 $7.16{\times}10^{-4}cm/sec$의 값으로 나타났다. 최대 한계투수계수 이하의 값을 갖는 국내의 화강풍화토로 구성된 절토사면에서 한계강우강도 이하의 강우가 최소 강우지속시간보다 오랫동안 지속될 때에는 포화깊이에 따른 얕은파괴의 검토가 고려되어져야 할 것으로 판단되었다. 또한, 가상파괴면이 발생하는 수평거리, 포화깊이, 강도정수 변화에 따른 사면안전율의 변화관계를 통해 절토사면의 얕은파괴 특성을 파악 할 수 있었다.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part I: Modeling and experiments

  • Huang, Y.L.;Chen, H.J.;Rosowsky, D.V.;Kao, Y.G.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.53-66
    • /
    • 2000
  • This paper proposes a simple numerical model for use in a finite analysis (FEA) of scaffold-shoring systems. The structural model consists of a single set of multiple-story scaffolds with constraints in the out-of-plane direction at every connection joint between stories. Although this model has only two dimensions (termed the 2-D model), it is derived from the analysis of a complete scaffold-shoring system and represents the structural behavior of a complete three-dimensional system. Experimental testing of scaffolds up to three stories in height conducted in the laboratory, along with an outdoor test of a five-story scaffold system, were used to validate the 2-D model. Both failure modes and critical loads were compared. In the comparison of failure modes, the computational results agree very well with the test results. However, in the comparison of critical loads, computational results were consistently somewhat greater than test results. The decreasing trends of critical loads with number of stories in both the test and simulation results were similar. After investigations to explain the differences between the computationally and experimentally determined critical loads, it was recommended that the 2-D model be used as the numerical model in subsequent analysis. In addition, the computational critical loads were calibrated and revised in accordance with the experimental critical loads, and the revised critical loads were then used as load-carrying capacities for scaffold-shoring systems for any number of stories. Finally, a simple procedure is suggested for determining load-carrying capacities of scaffold-shoring systems of heights other than those considered in this study.

소형 무인항공기에 이용되는 안테나간의 상호결합 해석 (Analysis of Mutual Coupling between Antennas on Small UAV)

  • 김현경;김태식;이해창
    • 한국전자파학회논문지
    • /
    • 제13권5호
    • /
    • pp.407-415
    • /
    • 2002
  • 본 논문에서는 무인항공기에 탑재된 서로 다른 주파수에서 동작하는 안테나간의 상호결합을 계산하여 안테나의 효율적인 배치방법을 제안한다. FDTD 기법을 이용하여 계산하였다. 시뮬레이션 파라미터는 안테나간의 거리, 안테나간의 높이차, 접지구조 등으로 제한하였다. 시뮬레이션 결과의 정확도를 검증하기 위해 다른 수치 해석 기법을 이용한 해석결과와 비교하였다. 안테나간의 상대적인 높이차가 안테나 상호결합에 가장 큰 영향을 주는 요인으로 나타났다.

하드디스크의 표면파손과 데이터 손실과의 관계 (Relationship between Hard Disk Surface Damage and Data Loss)

  • 이성창;박용식;전규찬;김대은
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.35-42
    • /
    • 2000
  • In recent years the recording density of hard disks has increased significantly largely due to the decreasing flying height. As a result of decreased flying height, the reliability issue become more critical. In this work the relationship between hard disk surface damage and data loss was investigated by using an actual hard disk drive. The purpose of this research was to identify the key factor which leads to data loss. It was shown that data loss is directly related to the physical damage of the Co-magnetic layer and there was no data loss when only carbon protective coating was damaged by the diamond tip.

  • PDF

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.403-414
    • /
    • 2018
  • In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.

전단스팬비 영향을 고려한 RC구속조적조 벽체의 내진성능평가 (Seismic Performance Evaluation of Confined Masonry Wall System Considering of Shear-Depth Ratio)

  • 김경태;서수연;윤승조;성기태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.1-4
    • /
    • 2005
  • To investigate the effective seismic strengthening methods for masonry walls in developing countries, a total of four confined masonry (CM) walls were constructed and tested. In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns for the improvement of the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. The heights of inflection point considered were 0.67 and 1.11 times the height of the wall measured from the top of foundation beam. The constant vertical axial stress applied was 0 MPa. During the test, cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations was measured. From test data, it was showed that the seismic performance of confined concrete block masonry walls was significantly affected by test variables.

  • PDF

절리 간격이 암반 사면의 안정성에 미치는 영향 (Influence of Joint Spacing to Rock Slope Stability)

  • 윤운상;권혁신;김정환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

헤드/디스크 시스템의 마찰력 측정 및 stiction 특성 (Characteristics of friction and stiction in head/disk interface)

  • 이성창;정구현;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.45-50
    • /
    • 1997
  • In recent years the recording density of hard disk has been increasing largely due to the decreasing flying height of head. However, as the flying height is decreased the reliability issue becomes ever more critical. This is because the reliability and durability of hard disk is related to the head/disk interaction as the two components come into partial or full contact. In this work characteristics of friction and stiction in head/disk interface was investigated using constant speed drag test and CSS(contact-start-stop) test. The purpose of this research is to identify the frictional properties of head/disk interface

  • PDF

화학기계적폴리싱(CMP)에 의한 층간절연막의 광역평탄화에 관한 연구 (A Global Planarization of Interlayer Dielectric Using Chemical Mechanical Polishing for ULSI Chip Fabrication)

  • 정해도
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.46-56
    • /
    • 1996
  • Planarization technique is rapidly recognized as a critical step in chip fabrication due to the increase in wiring density and the trend towards a three dimensional structure. Global planarity requires the preferential removal of the projecting features. Also, the several materials i.e. Si semiconductor, oxide dielectric and sluminum interconnect on the chip, should be removed simultaneously in order to produce a planar surface. This research has investihgated the development of the chemical mechanical polishing(CMP) machine with uniform pressure and velocity mechanism, and the pad insensitive to pattern topography named hard grooved(HG) pad for global planarization. Finally, a successful result of uniformity less than 5% standard deviation in residual oxide film and planarity less than 15nm in residual step height of 4 inch device wafer, is achieved.

  • PDF

Effect of Cutting Height on Productivity and Forage Quality of Alfalfa in Alpine Area of Korea

  • Kim, Hak Jin;Li, Yan Fen;Jeong, Eun Chan;Ahmadi, Farhad;Kim, Jong Geun
    • 한국초지조사료학회지
    • /
    • 제41권3호
    • /
    • pp.147-154
    • /
    • 2021
  • Cutting management has been identified as a critical factor in the alfalfa production systems because it has a significant impact on maximizing yield and maintaining the forage quality. The objective of this experiment was to determine the proper cutting height according to harvesting time for optimizing nutrient yield and forage nutritive quality of alfalfa grown in alpine regions of Korea. Alfalfa was sown at a seeding rate of 30 kg/ha in August 2018 and harvested at four cuttings in 2019 (3 May, 2 July, 11 September, and 13 October). Cutting heights were adjusted at 5, 15, and 25 cm above the soil surface. Alfalfa plant was tallest at the third cutting (109 cm), which was on average 35 cm taller than the first or second cutting. Relative feed value (RFV) remained unaffected by cutting height at the first harvest, but increased consistently in subsequent harvests as cutting height increased. Alfalfa collected at the first and fourth cuttings had the highest RFV (mean 152), which was on average 8 and 67 units higher than the second and third harvests, respectively. At each harvest, in vitro dry matter digestibility was highest in alfalfa cut at a 25-cm height. Dry matter (DM) production at each cutting height was highest in the first cutting, accounting for on average 36-37% of total annual DM production, and lowest in the fourth harvest, accounting for about 11-13% of the total DM yield. The total dry matter production (in four harvests) was 4,218 kg/ha higher when alfalfa was subjected to a cutting height of 5 cm rather than 25 cm. Cutting height had no effect on total crude protein yield, but from the first to fourth cutting, the protein yield followed a decreasing trend. Finally, there were visible declines in forage nutritive quality when alfalfa was cut at a shorter height. However, the magnitude of difference in total forage yield may outweigh the slight decline in forage quality when alfalfa is cut at a lower height. The findings of this study could help the alfalfa growers make better harvest management decisions.