• Title/Summary/Keyword: Critical current density ($J_c$)

Search Result 192, Processing Time 0.03 seconds

Epitaxial growth of buffer layers for superconducting coated conductors (초전도 선재용 완충층의 결정성장 연구)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.5-8
    • /
    • 2007
  • All three buffer layers of $Y_2O_3$, YSZ, and $CeO_2$ have been deposited on the biaxially textured metal substrates using rf-sputtering method, The first 50-70nm thick $Y_2O_3$ films were grown epitaxially on biaxially textured metal substrates as a seed layer and followed by the diffusion barrier ${\sim}100nm$ thick YSZ and subsequent capping layer ${\sim}200nm$ thick $CeO_2$ deposited epitaxially on top of $Y_2O_3$ seed layer. The epitaxial orientation of all three layers were all (100) grown with rocking curve Full Width at Half Maximum(FWHM) of $4-5^{\circ}$ and in plane phi-scan FWHM of $6-8^{\circ}$ using X -ray diffraction analysis. The NiO phases formed during the $Y_2O_3$ seed layer deposition seem to degrade the crystallinity and roughen the surface morphology of the following layer observed by AFM(Atomic Force Microscopy). The buffered tapes were used as substrates for long length YBCO coated conductors with high critical current density $J_c$. The five multi-turn of metal tapes was employed to increase the thickness of films and production rate to compensate the low growth rate of rf-sputtering method.

Superconducting Properties of Large Single Grain Gd1.5Ba2Cu3O7-y Bulk Superconductors (대면적 단결정 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 초전도 특성)

  • Kim, Chan-Joong;Park, Seung Yeon;Kim, Kwang-Mo;Park, Soon-Dong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.569-574
    • /
    • 2012
  • Large single grain $Gd_{1.5}Ba_2Cu_3O_{7-y}$ (Gd1.5) bulk superconductors were fabricated by a top-seeded melt growth (TSMG) process using an $NdBa_2Cu_3O_{7-y}$ seed. The seeded Gd1.5 powder compacts with a diameter of 50 mm were subjected to the heating cycles of a TSMG process. After the TSMG process, the diameter of the single grain Gd1.5 compact was reduced to 43 mm owing to the volume contraction during the heat treatment. The superconducting transition temperature ($T_c$) of the top surface of the single grain Gd1.5 sample was as high as 93.5 K. The critical current densities ($J_cs$) at 77 K and 1T and 1.5 T were in ranges of 25,200-43,900 $A/cm^2$ and 10,000-23,000 $A/cm^2$, respectively. The maximum attractive force at 77 K of the sample field-cooled using an Nd-B-Fe permanent magnet (surface magnetic field of 0. 527 T) was 108.3 N; the maximum repulsive force of the zero field-cooled sample was 262 N. The magnetic flux density of the sample field-cooled at 77 K was 0.311T, which is approximately 85% of the applied magnetic field of 0.375 T. Microstructure investigation showed that many $Gd_2BaCuO_5$ (Gd211) particles of a few ${\mu}m$ in size, which are flux pinning sites of Gd123, were trapped within the $GdBa_2Cu_3O_{7-y}$ (Gd123) grain; unreacted $Ba_3Cu_5O_8$ liquid and Gd211 particles were present near the edge regions of the single grain Gd1.5 bulk compact.