• Title/Summary/Keyword: Critical concentration

Search Result 1,333, Processing Time 0.028 seconds

Chemical Characteristics of Soil and Groundwater in Plastic Film House Fields under Fertigation System (시설하우스 관비재배 토양과 지하수의 화학성)

  • Lee, Young-Han;Lee, Seong-Tae;Lee, Sang-Dae;Kim, Yeong-Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.326-333
    • /
    • 2005
  • To enhance groundwater quality and soil nutrient management in fertigated plastic film house, groundwater samples from Jinju 52, Sacheon 3, Changnyeong 3, Sancheong 4 and Namhae 2 sites and soil samples from Jinju 23 sites were collected from September to November in 2004. The average concentration of $NO_3-N$ in groundwater was $12.0mg{\ell}^{-1}$ and 20% of survey sites exceeded the limiting level $(20mg{\ell}^{-1})$ of agricultural goundwater quality. The amount of ions in groundwater was in the order of $Ca^{2+}>Na^+>Mg^{2+}>NH_4-N>K^+$ in cations and ${HCO_3}^->{SO_4}^{2-}>NO_3-N>Cl^-$ in anions. Electrical conductivity of groundwater was positively correlated with $Ca^{2+},\;Cl^-,\;Mg^{2+},\;{SO_4}^{2-},\;NO_3-N\;and\;Na^+$ concentrations. In addition, it had significantly positive correlation with sum cations and anions, respectively $({\Sigma}cations\;(me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}4.65,\;{\Sigma}anions\;(me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}7.63\;and\;{\Sigma}\;(cations+anions,\;me{\ell}^{-1})$ = EC values $(dS\;m^{-1}){\times}11.1)$. The proportions of soil chemical properties over the critical levels for crop production in fertigated plastic film house were 56.5% in pH, 47.8% in OM, 95.7% in available $P_2O_5$, 78.3% in exchangeable K, 87% in exchangeable Ca, 56.5% in exchangeable Mg and 43.5% in EC. Soil pH was positively correlated with pH $(r=0.540^{**})$ and ${HCO_3}^-$ concentration $(r=0.523^{**})$ of groundwater.

Seasonal Variation in Water Quality of Mankyeong River and Groundwater at Controlled Horticulture Region (만경강과 그 인근 시설재배지 지하수의 시기별 수질변화)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kang, Jong-Gook;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.223-231
    • /
    • 1999
  • This study was carried out to investigate the factors influencing water quality of the river (Mankyeong River) and groundwater in controlled horticulture region from 1994 to 1998. Water quality of Mankyeong River was monitored at 13 sites along main stream for 6 months from April to September from 1994 to 1997. Monthly average concentrations of $NH_4-N$, $SO{_4}^{2-}$ and $Cl^-$ were highest in April, while that of $NO_3-N$ was highest in August. Monthly average concentrations of COD was highest in September Concentrations of $NH_4-N$ and $SO{_4}^{2-}$ in many sites of Mankyeong River exceeded the water quality criteria of agricultural water for irrigation. Water quality of Mankyeong River was not suitable for the irrigation source excepted the sites such as Hari, Gosan and Soyang stream. The floodgates of Mokcheon, Yocheon, Jeonju and Samcheon streams were rapidly polluted by the municipal sewage, otherwise the Iksan stream was rapidly polluted by the sewage of swine. The sum of inorganic ion concentrations in Mankyeong River was highest at floodgate of Yocheon due to the sewages municipal and industrial. The order of the major anions and canons concentration in Mankyeong River- stream were $SO{_4}^{2-}$ > $Cl^-$ > $NO{_3}^-$ > $PO{_4}^{3-}$ and $Na^+$ > $Ca^{2+}$ > $NH{_4}^+$ > $Mg^{2+}$ > $K^+$, respectively. The geoundwater quality at controlled horticulture region was surveyed 4 sites from 1994 to 1998. Concentrations of $NH_4-N$ and $NO_3-N$ were lower at the deeper groundwater. However there was no difference between the concentrations of $SO{_4}^{2-}$ and $Na^+$, and the groundwater depth below 15m. Contents of $NH_4-N$, $NO_3-N$, $PO{_4}^{3-}$, $SO{_4}^{2-}$, $Na^+$ and $Cl^-$ in groundwater were the highest at dry season. Nitrate-N level, exceeded $20mg\;l^{-1}$, the critical level for agricultural usage, at Yongjinmyeon Wanju and $PO{_4}^{3-}$ concentration were higher at Seogtandong Iksan than the other places.

  • PDF

Optimizated pH and Mitigated Ammonia Emission in Pig Manure Slurry by Soluble Carbohydrate Supplementation (수용성 탄수화물을 이용한 분뇨슬러리 pH 적정화 및 암모니아 휘산의 저감)

  • Lim, Joung-Soo;Hwang, Ok-Hwa;Lee, Sang Ryong;Cho, Sung-Back;Kwag, Jung-Hoon;Lee, Dong-Hyun;Jung, Min Woong;Han, Deug-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.103-110
    • /
    • 2017
  • In Concentrated Animal Feeding Operations(CAFOs), emission of ammonia from stored manure contributes negatively on the wellness of livestock. In CAFOs facilities, indoor aerial ammonia concentration oftentime surpasses the critical level potentially harmful to livestock's immune system. Understandably, numerous researches to control aerial ammonia have been conducted in countries where CAFOs were practiced for many decades. Some innovative technologies, such as scrubber, bio-filter, and additives emerged, as a result. Among them, microbial additives became popular in Korea, due to an easiness of use and affordability. However, microbial additives still have some weaknesses. Their price is still high enough to discourage farmers who run a small scale farm and their effectiveness are still questioned by many users and researchers. In the present study, we found soluble carbohydrates, such as sugar, glucose, and molasses, when supplemented to pig slurry manure, can mitigate ammonia emission. To be more specific, pig manure slurry(120kg), stored in container(200L), was supplemented with sugar at 0.1%(w/w) and was, subsequently, monitored for pH and aerial ammonia for next 10 days. From this experiment, it was found that the sugar supplementation was effective in mitigating the aerial ammonia concentration (33% in average) when monitored daily. Also, the pH of manure slurry was maintained at relatively low level(8.2) in sugar-supplemented manure slurry while it was elevated to 8.5 in untreated slurry. Conclusively, the obtained data suggest that soluble carbohydrate can mitigate ammonia emission by acidifying manure slurry. Additionally, it can be suggested that soluble carbohydrates, such as sugar, glucose, and molasses, can be reasonable choices for animal farmers who have been looking for an alternative choice to replace expensive microbial additives.

Studies on the Grassland Development in the Forest Ⅷ. Effect of shading degrees on the quality, digestibility and nitrate nitrogen concentration of main grasses (林間草地 開發에 關한 硏究 Ⅷ. 遮光程度가 主要 牧草의 品質, 消化率 및 窒酸態窒素含量에 미치는 影響)

  • Park, Moon-Soo;Seo, Sung;Han, Young-Choon;Lee, Joung-Kyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.2
    • /
    • pp.85-91
    • /
    • 1988
  • A field experiment was conduted to determine the effects of shading degrees (O: full sunlight, 25, 50 and 75%) on the proximate components, cell wall constituents (CWC), digestibility, water soluble carbohydrates (WSC) and nitrate nitrogen ($NO_3$-N) concentration of grasses grown in forest. For the test different artificial shading houses were established and pasutre species used were orchardgrass, timothy, perennial ryegrass and ladino clover. the experiment was performed at LES in Suwon, 1985 1. Considering proximate components, CWC and digestibility of grasses, ladino clover showed the best quality, and then perennial ryegrass. 2. The contents of crude protein, crude ash, and digestibility of grasses were increased with shadking, regardless of pasture species. As the shading degrees are increased, the contents of crude fibe in orchardgrass, perennial ryegrass and timothy were decreased, while that in ladino clover was increased with shading. 3. Grasses grwon in spring showed higher digestibility than those grwon in summer season. 4. The content of WSC was the highest in perennial ryegrass, and then ladino clover, orchardgrass, and timothy, in that order. Also WSC was decreased as the shading degrees are in creased. 5. The content of $NO_3$-N was the highest in perennial ryegrass, and then orchardgrass, ladino clover and timothy, in that order. Also the $NO_3$-N was significantly increased with higher shading level. In the regression equation between shading degrees and $NO_3$-N ($r^2=0.90^{**},\;r^2=0.95^{**}$), shading degree of 43 to 44% was critical level, causing nitrate poisoning to animal. 6. Considering grass quality, dry matter yield and $NO_3$-N, less than 40% of shading degree (over 60% of full sunlight) was desirable for better grassland improvement, management and utilization in the forest.

  • PDF

Environmental Monitoring of Selected Veterinary Antibiotics in Soils, Sediments and Water Adjacent to a Poultry Manure Composting Facility in Gangwon Province, Korea (강원지역 계분 퇴비공장 인근 토양, 하천수 및 저질토의 항생물질 잔류특성 조사)

  • Lee, Hyeon-Yong;Lim, Jung-Eun;Kim, Sung-Chul;Kim, Kwon-Rae;Lee, Sang-Soo;Kwon, Oh-Kyung;Yang, Jae-E;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.278-286
    • /
    • 2010
  • Veterinary antibiotics have been used to treat disease and to promote growth of livestock. However, the total amount of veterinary antibiotics in Korea was much greater than other developed countries, and there is a high potential to release residual of antibiotics to environment. Consequentially, released antibiotics into the environment produces antibiotic resistant bacteria and causes adverse effects on human health. The objective of this research was to monitor antibiotic concentration in the environment adjacent to facilities which compose chicken manure. Total of 10 antibiotics were selected based on the total amount of higher usage in Korea, and its residuals were measured from surface water, soil and sediment. The frequencies of detected antibiotics were ranged 31-92% from soil, 0-93% from water, and 33-93% from sediment. Generally, a higher frequency was observed in soil or sediment than water. Different ranges in concentration among 4 different antibiotic groups was found from not detected(N.D.) to 35.6 ${\mu}g/kg$ for soil, N.D. to 19.2 ${\mu}g/L$ for water and N.D. to 114.3 ${\mu}g/kg$ for sediment. Our findings suggest that solid phase such as soil and sediment is a critical component to be needed to conduct the environmental impact assessment of antibiotics.

The Relationship between Intracellular Protein Kinase C Concentration and Invasiveness in U-87 Malignant Glioma Cells (교모세포종 세포주 U-87에서 세포내 PKC 농도와 종양침습성과의 상관 관계)

  • Ji, Cheol;Cho, Kyung-Keun;Lee, Kyung Jin;Park, Sung Chan;Cho, Jung Ki;Kang, Joon Ki;Choi, Chang Rak
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.263-271
    • /
    • 2001
  • Objective : Glioblastomas, the most common type of primary brain tumors, are highly invasive and cause massive tissue destruction at both the tumor invading edges and in areas that are not in direct contact with glioma cells. As a result, patients with high-grade gliomas are faced with a poor prognosis. Such grim statistics emphasize the need to better understand the mechanisms that underlie glioma invasion, as these may lead to the identification of novel targets in the therapy of high grade gliomas. Protein kinase C(PKC) is a family of serine/threonine kinases and an important signal transduction enzyme that conveys signals generated by ligand-receptor interaction at the cell surface to the nucleus. PKC appears to be critical in regulating many aspects of glioma biology. The purpose of this study was to assess accurately the role of PKC in the invasion regulation of human gliomas based on hypothesis that protein kinase C(PKC) is functional in the process of glial tumor cell invasion. Method : To test this hypothesis, U-87 malignant glioma cell line intracellular PKC levels were up and down regulated and their invasiveness was tested. Intracellular PKC level was characterized using PKC activity assays. Invasion assays including barrier migration and spheroid confrontation were used to study the relationship between PKC concentration and invasiveness. Result : The cell line which were treated by PKC inhibitor tamoxifen and hypericin exhibited decreased PKC activity and decreased invasive abilities dose dependently both in matrigel invasion assay and tumor spheroid fetal rat brain aggregates(FRBA) confrontation assay. However, the cell line that was treated by PKC activator 12-O-tetradecanylphorbol-13acetate(TPA) did not exhibit increases in either PKC activity or invasive ability. Conclusion : These studies suggest that PKC may be a useful molecular target for the chemotherapy of glioblastoma and other malignancies and that a therapeutic approach based on the ability of PKC inhibitors may be helpful in preventing invasion.

  • PDF

Application of Chemiluminescence Enzyme Immunoassay Method to Collect in vivo Matured Oocyte in Dog Cloning (개 복제 시 체내 성숙 난자 회수를 위한 화학발광효소면역분석기법의 적용)

  • Kim, Min-Jung;Oh, Hyun-Ju;Kim, Geon-A;Jo, Young-Kwang;Choi, Jin;Lee, Byeong-Chun
    • Journal of Veterinary Clinics
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2014
  • Accurate determination of in vivo oocyte maturation is particularly critical for dog cloning compared to other assisted reproductive technologies because oocytes in metaphase II stage have to be recovered in order to undergo somatic cell nuclear transfer right after its recovery. The aim of present study was to evaluate the reliability and to set a reference range of a chemiluminescence enzyme immunoassay (CLEIA) compared to radioimmunoassay (RIA) method to retrieve in vivo matured oocytes. Serum progesterone concentration during proestrus and estrus was analyzed by RIA and CLEIA to determine ovulation day (Day 0). On Day 3, in vivo oocytes were recovered surgically and evaluated microscopically maturation status after staining nucleus with bisbenzimidazole dye. Mean progesterone concentration by CLEIA ($7.64{\pm}0.06ng/ml$) was significantly higher than by RIA ($6.46{\pm}0.04ng/ml$, P < 0.0001). It was not different between CLEIA ($10.01{\pm}0.34ng/ml$) and RIA values ($7.91{\pm}0.14ng/ml$, P < 0.05) on Day 0, but significantly higher CLEIA level on Day -1 and Day 1 ($6.41{\pm}0.15$ and $14.25{\pm}0.44ng/ml$) was assessed compared to RIA ($4.95{\pm}0.10$ and $11.29{\pm}0.34ng/ml$). However, with both methods, progesterone level was significantly increased from Day -1 to Day 2. To determine oocyte maturation with CLEIA method, a wider and higher reference range has to be considered.

Effect of Carbon Dioxide Pressure on Mineral Carbonation in Acidic Solutions (산성용액에서 이산화탄소의 압력이 광물탄산화에 미치는 영향)

  • Ryu, Kyoung Won;Hong, Seok Jin;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Magnesium silicate minerals such as serpentine [Mg3Si2O5(OH)4] have a high potential for the sequestration of CO2; thus, their reactivity toward dissolution under CO2-free and CO2-containing conditions in acidic solvents is a critical process with respect to their carbonation reactions. To examine the carbonation efficiency and dissolution mechanism of serpentine, hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at 100 and 150℃. The serpentine dissolution experiments were conducted in H2SO4 solution with concentration range of 0.3-1 M and at a CO2 partial pressure of 3 MPa. The initial pH of the solution was adjusted to 13 for the carbonation process. Under CO2-free and CO2-containing conditions, the carbonation efficiency increased in proportion to the concentration of H2SO4 and the reaction temperature. The leaching rate under CO2-containing conditions was higher than that under CO2-free conditions. This suggests that shows the presence of CO2 affects the carbonation reaction. The leaching and carbonation efficiencies at 150℃ in 1 M H2SO4 solution under CO2-containing conditions were 85 and 84%, respectively. The dissolution rate of Mg was higher than that of Si, such that the Mg : Si ratio of the reacted serpentine decreased from the inner part (approximately 1.5) to the outer part (less than 0.1). The resultant silica-rich layer of the reaction product ultimately changed through the Mg-depleted skeletal phase and the pseudo-serpentine phase to the amorphous silica phase. A passivating silica layer was not observed on the outer surface of the reacted serpentine.

Characterization of Copper Toxicity Symptoms and Determination of Tissue Critical Concentration for Diagnostic Criteria in Korean Bred Strawberries (국내육성 주요 딸기 품종에서 발생하는 구리(Cu) 과잉 증상 및 영양진단을 위한 식물체 내 한계농도)

  • Choi, Jong Myung;Nam, Min Ho;Lee, Chiwon W.
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.477-483
    • /
    • 2012
  • This study was carried out to investigate the influence of copper concentrations in fertilizer solution on the growth of and nutrient uptake by domestically bred strawberries. The characterization of toxicity symptoms as well as tissue analyses based on dry weight of above ground tissue were also conducted to determine the threshold levels in plants when toxicity developed in copper. The dry weights of the above ground tissue were not significantly different among the treatments of 0.25 mM to 1.0 mM in 'Keumhyang' and 'Maehyang' strawberries and that of 0.25 mM to 3.0 mM in 'Seolhyang' strawberry. This indicates that the 'Seolhyang' strawberry is more tolerant to copper toxicity than 'Keumhyang' or 'Maehyang' strawberries. Application of copper at high concentrations resulted in severe toxicity such as death of extensive areas of leaves. The lower leaves became yellow and die rapidly as the symptoms spread up the plants. The leaf blades and petioles died back to the crown and hang on by mechanical attachment. Symptoms of copper toxicity in lower leaves developed as browning on leaf margins and in patches between leaf veins that became necrotic. The elevation of copper concentrations in fertilizer solution did not influence the tissue phosphorus, potassium, calcium, and magnesium contents based on the dry weight of the above ground tissue. The tissue copper contents increased lineally as the copper concentrations in fertilizer solution were elevated. But the tissue iron, manganese and boron contents were not influenced by the concentrations. When the concentration of copper at which growth of a plant is retarded by 10% is regarded as threshold level, the copper contents based on dry weight of above ground plant tissue should be lower than 71.4, 57.9 and 74.8 $mg{\cdot}kg^{-1}$ in 'Keumhyang', 'Maehyang' and 'Seolhyang' strawberries, respectively. The symptom characterization and established threshold level in copper toxicity would help growers to prevent the reduction of crop growth and yield in 'Seolhyang' strawberry cultivation.

Enhanced Bioremediation of Phenanthrene Using Biosurfactant (생물계면활성제를 이용한 Phenanthrene의 생물학적 처리)

  • 신경희;김경웅
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.375-380
    • /
    • 2003
  • This study was carried out 1) to investigate the pH effect on solubilization of phenanthrene by biosurfactant in aqueous system and 2) to evaluate the pH effect on the biodegradation rate of phenanthrene in the presence and the absence of the biosurfactant by phenanthrene degraders. Tween 80, which is a chemically synthesized surfactant, showed greater solubilizing capacity than rhamnolipid. The solubilization capacity can be expressed as a MSR(molar solubilization ratio=moles of organic compounds solubilized per mole of surfactant). The calculated MSR of Tween 80 and rhamnolipid were 0.1449 and 0.0425 respectively. The kinetic study of phenanthrene solubilization by rhamnolipid showed that solubilization mechanism could reach equilibrium within 24 hours. Addition of 240 ppm rhamnolipid solution, which concentration is 4.3 times of Critical Micelle Concentration(CMC), caused 9 times solubility enhancement compared to water solubility. The highest solubilities were detected around a pH range of 4.5-5.5. Changes in apparent solubility with the changes in pH are possibly related to the fact that the rhamnolipid, an anionic surfactant, can form different structures depending on the pH. Two biodegradation experiments were performed in the absence and the presence of rhamnolipid, with the cell growth investigated using a spread plate method. The specific growth rates at pH 6 and 7 were higher than at the other pH, and the HPLC analysis data, for the total phenanthrene loss, confirmed the trends in the $\mu$(specific growth rate) values. In presence of rhamnolipid, maximum $\mu$ values shifted from around pH 5 which showed maximum enhancement of solubility in the abiotic experiment, compared to the $\mu$ values obtained without the biosurfactant. In this study, the increase in the observed specific grow rate(1.44 times) was not as high as the increase in solubilization(5 times). This was supported by the fact all the solubilized phenanthrene is not bioavailable to microorganisms.