• 제목/요약/키워드: Critical collision

검색결과 120건 처리시간 0.024초

Comparative Study on Collision Strength of LNG Carriers

  • Choe, Ick-Hung;Kim, Jae-Hyun;Ahn, Ho-Jong;Kim, Oi-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제5권3호
    • /
    • pp.36-44
    • /
    • 2001
  • The collision energy absorbing characteristics of side structure of the LNG carriers which have the cargo containment systems of the spherical and the membrane types are compared. A failure mechanism of the double hull side structures of 130, 000 $m^3$ class LNG carriers under sideways collision event has been simulated by using the detailed finite element calculations. In ship collision analysis, the finite element method based on explicit time integration has been use[1 with much success. Finite element modeling techniques for detail description of structural members antral ship motion regarding the dynamic behavior allowed to investigate the effect of bow shape and the initial contact position on side shell of collided ship. In the numerical simulations of the ship-to-ship sideways collision, the effect of the colliding bow shapes and the change of the colliding ship draft are investigated. The critical collision energy which is absorbed by a side structure of a collided ship until the fore-end of colliding ship arrives at the boundary of the cargo tank is calculated. The critical speed of specified colliding ships which can not penetrate the boundary of the LNG cargo tank of the collided ship under collision accident if evaluated.

  • PDF

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

Safety Critical 시스템에서 사고의 예방동작간 충돌 분석 기법 (A Collision Analysis Technique for Prevention Actions of Accident in Safety Critical System)

  • 권장진;홍장의
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권10호
    • /
    • pp.661-668
    • /
    • 2013
  • Safety Critical 시스템은 시스템의 기능적인 실패 또는 예기치 못한 상황의 발생으로 인해 인명피해, 재산피해, 환경 피해와 같은 치명적인 사고를 초래할 수 있는 시스템을 의미한다. 그러므로 Safety Critical 시스템의 안전을 보장하기 위해서는 시스템 설계 단계에서 시스템에 존재할 수 있는 위험성들이 충분히 고려되어야 하며, 사고가 발생했을 시 피해를 최소화시키기 위한 일련의 예방 동작들이 설계되어야 한다. 현재에는 Safety Critical 시스템의 설계 단계에서 위험성을 식별하고 분석하기 위한 많은 방법들이 연구되었으며, 이 중에는 예기치 못한 사건으로 인한 피해를 예방하는 동작들의 성공 여부를 분석하는 기법도 존재한다. 본 연구에서는 위의 예방 동작들의 성공 여부에 대한 분석뿐만 아니라 기존 연구들에서 언급하지 못한 예방 동작들 간의 충돌과 이로 인해 발생할 수 있는 피해를 분석하는 방법을 제시하고자 한다. 제안한 방법을 통해 Safety Critical 시스템의 안전성이 견고해지고 피해 예방을 위한 동작들의 올바른 설계에 도움이 될 수 있을 것이다.

A Study on the Abnormal Behavior of the Viscosity near the Critical Point

  • Kim, Won-Soo;Pak, Hyung-Suk;Chair, Tong-Seek
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권4호
    • /
    • pp.372-374
    • /
    • 1989
  • The new viscosity theory is applied to the abnormal behavior of the viscosity near the critical point. This theory suggests that the viscosity is equal to the product of the absolute pressure(kinetic pressure + internal pressure) and the collision time. We can find this abnormal behavior to be due to the large collision time near the critical point. The agreements between theoriticals and experimentals of the critical enhancement are satisfactory.

선수부 설계시 구조거동과 충돌격벽에 미치는 영향 (Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Design)

  • 신영식;박명규
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.219-231
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effects of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보) (Numerical Simulation of Structural Response in Bow Collision (1st Report))

  • 박명규
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

스키드마크 및 요마크를 이용한 차량사고재구성 (The Vehicle Accident Reconstruction using Skid and Yaw Marks)

  • 이승종;하정섭
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

A Study on Efficient Infrastructure Architecture for Intersection Collision Avoidance Associated with Sensor Networks

  • 황광일
    • 한국통신학회논문지
    • /
    • 제33권8B호
    • /
    • pp.657-666
    • /
    • 2008
  • The intersection collision avoidance service among various telematics application services is regarded as one of the most critical services with regard to safety. In such safety applications, real-time, correct transmission of service is required. In this paper, we study on efficient infrastructure architecture for intersection collision avoidance using a cooperative mechanism between vehicles and wireless infrastructure. In particular, we propose an infrastructure, called CISN (Cooperative Infrastructure associated with Sensor Networks), in which proper numbers of sensor nodes are deployed on each road, surrounding the intersection. In the proposed architecture, overall service performance is influenced by various parameters consisting of the infrastructure, such as the number of deployed sensor nodes, radio range and broadcast interval of base station, and so on. In order to test the feasibility of the CISN model in advance, and to evaluate the correctness and real-time transmission ability, an intersection sensor deployment simulator is developed. Through various simulations on several environments, we identify optimal points of some critical parameters to build the most desirable CISN.

선수 충돌시 구조거동과 충돌격벽에 미치는 영향 (Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Collision)

  • 신영식;박명규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.195-204
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the result of these simulation it provides the optimal design concept for the low construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

도시철도차량의 가변편성을 고려한 고무완충기의 임계속도 평가 (An Evaluation of Critical Speed for Draft Gear using Variable Formation EMU)

  • 조정길;김용욱;한재현;최정균;서경수;구정서
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.139-143
    • /
    • 2019
  • In this study, we tried to derive the most severe scenario and its critical speed by 1-D collision simulation with a variable formation vehicle in order to prepare for the change of demand in Seoul Metropolitan Subway Line 3, which is operated by fixed arrangement. After establishing various collision scenario conditions, the friction coefficient between the wheel and the rail was evaluated as 0.3, which is considered to be severe. As a result of analysis according to all scenarios, the most severe scenario conditions were confirmed by comparing rubber shock absorber performance and vehicle collision deceleration. In addition, a typical wheel-rail friction coefficient was derived through accident cases, and the analysis was performed again and compared. Finally, the criterion of the critical speed in the condition of the friction coefficient of the normal wheel - rail condition was confirmed.