• Title/Summary/Keyword: Critical angle

Search Result 775, Processing Time 0.03 seconds

Fabrication and characterization of $YBa_2Cu_3O_7$ step-edge Josephson junctions prepared on sapphire substrates

  • Lim, Hae-Ryong;Kim, In-Seon;Kim, Dong-Ho;Park, Yong-Ki;Park, Jong-Chul
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.146-150
    • /
    • 2000
  • Step edge Josephson junctions in c-axis oriented $YBa_2Cu_3O_7$ films were fabricated on $CeO_2$ buffered sapphire substrates. The step angle was controlled in the wide range of $20^{\circ}\sim75^{\circ}$ by the Ar ion milling technique. I-V curves of junction fabricated on the thickness ratio of $\sim$0.8 and the step angle of $35^{\circ}$ were exhibited RSJ-like behavior with $I_CR_N$ product of $\sim250{\mu}A$ and critical current density of $\sim2\times10^4A/cm^2$ at 77 K. Critical current of step edge junction was increased linearly with decreasing temperature but the normal resistance was almost constant. Total samples of step edge Josephson junction was satisfied a scaling behavior of $I_CR_N{\propto}(J_C)^{0.5}$.

  • PDF

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

Linearized Dynamic Analysis of a Four-Wheel Steering Vehicle (Bicycle 모델을 이용한 4륜 조향 차량의 동력학 해석)

  • Lee, Y.H.;Kim, S.I.;Suh, M.W.;Son, H.S.;Kim, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.101-109
    • /
    • 1994
  • Recently, four-wheel steering systems have been developed and studied as one of the latest automotive technologies for improving the handling characteristics of a vehicle. In much of the proposed four-wheel steering systems, the side slip angle at the vehicle's center of gravity is maintained at zero. This approach allows the greater maneuverability at low speed by means of counter-phase rear steering and the improved stability at high speed through same-phase rear steering. In this paper, the effects of several four-wheel steering systems are studied and discussed on the responsiveness and stability of the vehicle by using the linear analysis. Especially, the effects of the cornering stiffnesses of both front and rear wheels are investigated on the yaw velocity gain and critical speed of the vehicle.

  • PDF

Study of Flow Structure and Pressure Drop Characteristics in the Louvered-Fin Type Heat Exchanger (루우버휜형 열교환기의 유동구조 및 압력강하 특성에 관한 연구)

  • Lee, K.S.;Jeon, C.D.;Lee, J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.140-154
    • /
    • 1994
  • Experimental studies were performed to determine the characteristics of flow structure and pressure drop in 15 : 1 scale models of multi-louvered fin heat exchanger in a wide range of variables($L_P/F_P=0.5{\sim}1.23$, ${\theta}=27^{\circ}{\sim}37^{\circ}$, $Re_{LP}=50{\sim}2000$). Flow structure inside the louvered fin was analyzed by smoketube method and new correlations on flow efficiency and drag coefficient were suggested. The new definition for flow efficiency, which modifies the existing flow efficiency, can predict the flow efficiency in the range above mentioned and is represented as a function of Reynolds number, louver pitch to fin pitch ratio, louver angle at low Reynolds number. Drag coefficient which is defined here is a function of Reynolds number, louver pitch to fin pitch ratio, louver angle below critical Reynolds number, and can be represented by a function of louver pitch to fin pitch ratio only above the critical Reynolds number.

  • PDF

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

Preparation and Characterization of Surface Energy of BPDA-BAPP Polyimide

  • Kim, Kyung-Hoe;Kim, Yong-Gwon;Kwon, Young-Hwan
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.388-396
    • /
    • 2009
  • The surface properties (water sorption and repellency, adhesion) are closely related to the surface tension of polymer solids. The critical surface tension (${\gamma}_c$) and surface tension (${\gamma}_s$) of a polymer solid were estimated by the contact angle method by our quantitative imaging system. BPDA (3,3',4,4'-biphenyl tetracarboxylic dianhydride)-BAPP (1,3-Bis(4-aminophenoxy) propane) polyimide was successfully synthesized. The ${\gamma}_c$ values were analyzed by a Zisman plot, a Young-$Dupr\acute{e}$-Good-Girifalco plot, and a log ($1+cos{\theta}$) vs log ${\gamma}_L$ plot. The ${\gamma}_s$ value of BPDA-BAPE polyimide was evaluated using the geometric mean equation and our multiple regression analysis. The calculated values of ${{\gamma}_s^d$ (a dispersion component), ${{\gamma}_s^p$ (a polar component), ${{\gamma}_s^h$ (a hydrogen bonding component), and ${\gamma}_s$ were 30.79, 9.32, 0.20, and 40.31 $mN{\cdot}m^{-1}$, respectively. The ${\gamma}_s$ of BPDA-BAPP polyimide containing both a methylene group and an ether group was larger than that of the polyimide containing only a methylene group.

Transient State Analysis of Network Connected to Wind Generation System (풍력발전시스템이 연계된 계통의 과도상태해석)

  • Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • Generator for wind power can be either synchronous or asynchronous (induction) types. Induction and synchronous generators behave in a different way when subjected to severe faults. Induction generators does not have an angle stability limit and short circuit in the neighborhood of an Induction generator causes the demagnetization of the machine when the fault is cleared, the voltage raises slowly, while the grid contributes with reactive power to the generator and the magnetic flux recovers. On the other hand in the synchronous generators the recovery of the voltage is immediate, since the excitation of the rotor angle comes from an independent circuit. This paper shows the result of the transient state analysis in the network connected to wind generation system Several case studies have been conducted to determine the effect of the clearing time of a fault on the network stability. It has been found that the critical clearing time can be as low as 61ms in the case of induction generator compared to 370ms in the case of synchronous generator.

A Fast Screening Algorithm for On-Line Transient Stability Assessment (온라인 과도안정도 판정을 위한 상정사고 고속 스크리닝 알고리즘 개발)

  • Lee, Jong-Seock;Yang, Jung-Dae;Lee, Byong-Jun;Kwon, Sae-Hyuk;Nam, Hae-Kon;Choo, Jin-Boo;Lee, Koung-Guk;Yun, Sang-Hyun;Park, Byung-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.225-233
    • /
    • 2001
  • SIME(SIngle Machine Equivalent) method has been recognized as a useful tool to determine transient stability of power systems. In this paper, SIME method is used to develop the KEPCO transient stability assessment (TSA) tool. A new screening algorithm that can be implemented in SIME method is proposed. The salient feature of the proposed screening algorithm is as follows. First, critical generators are identified by a new index in the early stage of the time domain simulation. Thus, computational time required to find OMIB(One Machine Infinite Bus) can be reduced significantly. Second, clustering critical machines can be performed even in very stable cases. It enables to be avoid extra calculation of time trajectory that is needed in SIME for classifying the stable cases. Finally, using power-angle trajectory and subdividing contingency classification have improved the screening capability. This algorithm is applied to the fast TSA of the KEPCO system.

  • PDF

Mathematical modelling of the stability of carbon nanotube-reinforced panels

  • Sobhani Aragh, B.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.727-740
    • /
    • 2017
  • The present paper studies the stability analysis of the continuously graded CNT-Reinforced Composite (CNTRC) panel stiffened by rings and stringers. The Stiffened Panel (SP) subjected to axial and lateral loads is reinforced by agglomerated CNTs smoothly graded through the thickness. A two-parameter Eshelby-Mori-Tanaka (EMT) model is adopted to derive the effective material moduli of the CNTRC. The stability equations of the CNRTC SP are obtained by means of the adjacent equilibrium criterion. Notwithstanding most available literature in which the stiffener effects were smeared out over the respective stiffener spacing, in the present work, the stiffeners are modeled as Euler-Bernoulli beams. The Generalized Differential Quadrature Method (GDQM) is employed to discretize the stability equations. A numerical study is performed to investigate the influences of different types of parameters involved on the critical buckling of the SP reinforced by agglomerated CNTs. The results achieved reveal that continuously distributing of CNTs adjacent to the inner and outer panel's surface results in improving the stiffness of the SP and, as a consequence, inclining the critical buckling load. Furthermore, it has been concluded that the decline rate of buckling load intensity factor owing to the increase of the panel angle is significantly more sensible for the smaller values of panel angle.

Numerical investigation of the effects angles of attack on the flutter of a viscoelastic plate

  • Sherov, A.G.;Khudayarov, B.A.;Ruzmetov, K.Sh.;Aliyarov, J.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • As is shown in the paper, the Koltunov-Rzhanitsyn singular kernel of heredity (when constructing mathematical models of the dynamics problem of the hereditary theory of viscoelasticity) adequately describes real mechanical processes, best approximates experimental data for a long period of time. A mathematical model of the problem of the flutter of viscoelastic plates moving in a gas with a high supersonic velocity is given. Using the Bubnov-Galerkin method, discrete models of the problem of the flatter of viscoelastic plates flowed over by supersonic gas flow are obtained. A numerical method is developed to solve nonlinear integro-differential equations (IDE) for the problem of the hereditary theory of viscoelasticity with weakly singular kernels. A general computational algorithm and a system of application programs have been developed, which allow one to investigate the nonlinear dynamic problems of the hereditary theory of viscoelasticity with weakly singular kernels. On the basis of the proposed numerical method and algorithm, nonlinear problems of the flutter of viscoelastic plates flowed over in a gas flow at an arbitrary angle are investigated. In a wide range of changes in various parameters of the plate, the critical velocity of the flutter is determined. It is shown that the singularity parameter α affects not only the oscillations of viscoelastic systems, but the critical velocity of the flutter as well.