• Title/Summary/Keyword: Critical Work Model

Search Result 402, Processing Time 0.025 seconds

Finding Significant Factors to Affect Cost Contingency on Construction Projects Using ANOVA Statistical Method -Focused on Transportation Construction Projects in the US-

  • Lhee, Sang Choon
    • Architectural research
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2014
  • Risks, uncertainties, and associated cost overruns are critical problems for construction projects. Cost contingency is an important funding source for these unforeseen events and is included in the base estimate to help perform financially successful projects. In order to predict more accurate contingency, many empirical models using regression analysis and artificial neural network method have been proposed and showed its viability to minimize prediction errors. However, categorical factors on contingency cannot have been treated and thus considered in these empirical models since those models are able to treat only numerical factors. This paper identified potential factors on contingency in transportation construction projects and evaluated categorical factors using the one-way ANOVA statistical method. Among factors including project work type, delivery method type, contract agreement type, bid award type, letting type, and geographical location, two factors of project work type and contract agreement type were found to be statistically important on allocating cost contingency.

Optimization of Injection Molding Design Using Two-Characteristic Value Function Methodology (두 특성의 가치함수를 이용한 사출성형의 최적 설계)

  • Park, Jong-Cheon;Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 2015
  • Optimizing multiple design characteristics which are usually in conflict with each other in the injection molding process is frequently becoming a critical problem for designers who work in this area. The purpose of this work is to develop an automated design methodology for optimizing two such design characteristics found in injection-molded parts. A value function based on decision-making theory is used as a means of evaluating the performance of a two-characteristic design alternative. Also, a design space reduction algorithm based on Taguchi's orthogonal arrays is utilized to discover an optimal design alternative. Verification of the developed design methodology is carried out for an actual model with two design characteristics, the weld line and the gate location, to be optimized in computer simulation experiments.

Computer Simulation of Hemispherical Forming Process Texture-based Work hardening and Anisotropy (집합조직 기초 가공경화와 이방성에 의한 반구 성형공정의 전산 시뮬레이션)

  • Sim, J.K.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.199-202
    • /
    • 2006
  • The hardening and anisotropy based on the crystal plasticity is considered in the numerical simulation of hemispherical sheet forming process to find more realistic simulation results For calculating the yield shear stresses of each crystal, Taylor's model of the crystalline aggregate is employed. The yield stress of crystalline aggregate is computed by averaging the yield stresses of the crystal. The hardening is evaluated by using the Taylor factor and the critical resolved shear stress of the crystal. In addition, by observing the crystallographic texture and slip system, the anisotropy of the sheet is traced during the forming process. The anisotropy and hardening behaviors of the sheet found by the crystal plasticity are described better than those of obtained from the Hill's quadratic criterion based on the continuum plasticity.

  • PDF

Feasibility Study of Sludge Detection inside Pipes Using Torsional Guided Waves (비틀림 유도파를 이용한 배관 슬러지 검출 방법의 현장 적용성 평가)

  • Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.100-105
    • /
    • 2014
  • It has been previously reported that in principle sludge and blockages can be detected and even characterized by using guided ultrasonic torsional waves, based on an idealized model in which the sludge layer was simplified in terms of geometry and material properties. The work revealed that the presence of a layer inside a pipe scatters the guided wave propagating in the pipe and both the reflection and transmission of the guided wave can be used to effectively detect and characterize the layer. This paper proceeds the work by taking into account more realistic sludge characteristics, including irregular circumferential profiles of the sludge layer and imperfect bonding state between the sludge and the pipe. The influence of these issues is investigated to identify the critical factors that influence the detection and characterization capability of the two measurements.

Longitudinal static stability requirements for wing in ground effect vehicle

  • Yang, Wei;Yang, Zhigang;Collu, Maurizio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.259-269
    • /
    • 2015
  • The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

Development of an Inspection Item and its Application for the Hygienic Improvement of Foodservice Establishments Using - Hazard Analysis Critical Control Point(HACCP) Model- (식품접객업소(食品接客業所)의 위생개선(衛生改善)을 위(爲)한 검사항목(檢査項目) 개발(開發)과 활용(活用)에 관(關)한 연구(硏究) -HACCP 모델을 이용(利用)한 기여인자(寄與因子) 분석방법(分析方法)으로-)

  • Hong, Chong-Hae;Lee, Yong-Wook
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 1992.07a
    • /
    • pp.33-45
    • /
    • 1992
  • The sanitation inspection is the most frequently used procedure to protect foods prepared in foodservice establishments. In order to enhance foodservioe inspections and to improve post-inspection remedial measures, more practical evaluation methods for sanitation are required. The HACCP approach is based upon factors which contribute to foodborne disease rather than on factors which relate to aesthetics. Contributing factors for foodborne disease from foodservice establishments reported in USA, Canada, and England were analyzed to identify potential hazards during practical foodservioe operations. Hazards were classified at critical control points by risk ranking. Twenty-two observable practical indicators relating to each contributing factor were selected and adjusted to standardized procedures and hazard determiners at critical contral points. The weights for each inspection item were ranked as 1, 2, 3, 4 or 5 according to the risk level of contributing factors. And also application for the inspection item in different 6 types of work procedures was suggested for the use of specialized foodservice establishment and cafeteria, and of manager's self inspection in each establishment.

  • PDF

Failure Modeling of Bridge Components Subjected to Blast Loading Part II: Estimation of the Capacity and Critical Charge

  • Quintero, Russ;Wei, Jun;Galati, Nestore;Nanni, Antonio
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • The purpose of this paper is the assessment of the capacity of the reinforced concrete (RC) elements of an arch bridge when they are subjected to contact and near-contact explosive charges of various amounts, and the estimation of the critical charges for these components. The bridge considered is the Tenza Viaduct, a decommissioned structure south of Naples, Italy. Its primary elements, deck, piers and arches were analyzed. The evaluation was accomplished via numerical analyses that made possible to obtain the elements dynamic response when they are exposed to blast loading conditions. To evaluate the member's capacities, failure criteria for deck, piers and arches were proposed based on concrete damage parameters. Additionally, curves relating the explosive charge to the residual capacity and to damage level of the elements were also developed. The results of this work were taken into account to investigate the progressive collapse of the global structure.

Vibration Characteristics Analysis of High Speed Rotary Bell Cup with Different Shapes and Dimensions (형상 및 치수 변화에 따른 고속 회전 벨 컵의 진동 특성 해석)

  • Park, Jiong-Min;Choi, Seung-Bok;Sohn, Jung Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.857-864
    • /
    • 2016
  • In the present work, vibration analysis of high speed rotary bell cup model for paint atomizer application is carried out through numerical simulation. At first, eight bell cup models, considering four different cup shapes and two different cup diameters, are proposed and corresponding dynamic characteristics are investigated. To evaluate the operating stability, critical speed analysis is conducted using Campbell diagram and separation margin between operating speed and critical speed is identified. Unbalance vibration responses are also studied according to operating speed and balancing quality grade of G. Finally, the stability and adequacy of the proposed bell cup models are discussed for field application.

A CFD Prediction of a Micro Critical Nozzle (마이크로 임계노즐 유동의 CFD 예측)

  • 김재형;김희동;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $\kappa$-$\varepsilon$turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

Temperature dependent buckling analysis of graded porous plate reinforced with graphene platelets

  • Wei, Guohui;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.275-290
    • /
    • 2021
  • The main purpose of this research work is to investigate the critical buckling load of functionally graded (FG) porous plates with graphene platelets (GPLs) reinforcement using generalized differential quadrature (GDQ) method at thermal condition. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the plate thickness direction. Generally, the thermal distribution is considered to be nonlinear and the temperature changing continuously through the thickness of the nanocomposite plates according to the power-law distribution. To model closed cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme are used, through which mechanical properties of the structures can be extracted. Based on the third order shear deformation theory (TSDT) and the Hamilton's principle, the equations of motion are established and solved for various boundary conditions (B.Cs). The fast rate of convergence and accuracy of the method are investigated through the different solved examples and validity of the present study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns through the thickness, porosity coefficient and distribution of porosity on critical buckling load. Results reveal that the importance of thermal condition on of the critical load of FGP-GPL reinforced nanocomposite plates.