• Title/Summary/Keyword: Critical Theory

Search Result 1,506, Processing Time 0.031 seconds

Dynamic behavior of a supporting structure subjected to a force of time dependent frequency (시간종속적 하중이 작용하는 구조물의 동특성)

  • 정태진;박영조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.66-72
    • /
    • 1986
  • Numerical analysis has been made on the dynamic behavior of a supporting structure subjected to a force of time dependent frequency. The effect of solid viscosity is studied when the frequency of external force passes through the first critical frequency of the simple beam for four times. Within the Euler-Bernoulli beam theory, the solutions are obtained by using finite Fourier and Laplace transformation methods with respect to space and time variables. The result shows that the maximum value of the dynamic deflection is considerably affected by the value of the solid viscosity as well as the frequency difference The maximum dynamic deflection is found to occur in the frequency lower limit C of 0.85-0.985 in the presence of the solid viscosity.

  • PDF

Superconducting Junctions of InAs Semiconductor Nanowires

  • Doh, Yong-Joo;Franceschi, Silvano De;van Dam, Jorden A.;Bakkers, Erik P. A. M.;Kouwenhoven, Leo P.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.136-139
    • /
    • 2008
  • InAs semiconductor nanowires can provide a promising platform to integrate superconducting quantum circuit, which exploits tunable supercurrent under the operation of gate voltage. We report temperature and magnetic field dependence of the nanowire superconducting junctions, which is in agreement with the proximity-effect theory of superconductor-normal metal-superconductor weak link. Superconducting coherence length of the InAs nanowire is estimated from the fit and magnetic-field dependence of the critical current and the subgap structure of dI/dV is discussed as well.

  • PDF

Effects of Attached Mass on Stability of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성에 미치는 부가질량의 영향)

  • Son, In-Soo;Cho, Jeong-Rae;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.1002-1009
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached mass on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached mass and crack severity.

Dynamic characteristics of an elastically supported beam (탄성적으로 지지된 보의 동특성)

  • 정태진;박영조;홍동표
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.43-50
    • /
    • 1986
  • Numerical analysis has been made on the dynamic behavior of an elastically supported beam subjected to an axial force and solid viscosity when the frequency of external force passes through the first critical frequency of the beam. Within the Euler-Bernoulli beam theory the solutions are obtained by using finite Fourier sine transform and Laplace transformation methods with respect to space and time variables. Integrations involved in the theoretical results are carried out by Simpson's numerical integration rule. The result shows that the maximum value of the dynamic deflection are much affected by the value of a solid viscosity, an axial force, an elastic constant and ratio of .omega.$_{max}$/.omega.$_{1}$.

  • PDF

Efficient Target Bit Allocation Scheme in a Rate-Distortion Sense

  • Lee, W.Y.;Ra, J.B.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.31-36
    • /
    • 1997
  • Bit allocation is a critical problem in video encoding such as MPEG. To improve the quality of the reconstructed sequence for a given bit rate, the assigned target bits for a group of pictures (GOP) must be allocated to each picture efficiently. In this paper, we derive a target bit allocation algorithm for more efficient rate control, by assuming that the average rate-distortion curve for an input source is logarithmic. This target bit allocation is based on Shannon's rate-distortion theory, which deals with the minimization of source distortion subject to a channel rate constraint. Simulation results show that the proposed target bit allocation algorithm provides better performance than the one in MPEG-2 Test Model 5 (TM5).

  • PDF

A Study on the Relationship between Steam Generator Fouling and the Electric Power (증기발생기 파울링과 전기출력의 상관성 고찰)

  • Cho, Nam Cheoul;Shin, Dong Man;Kim, Yong Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • The heat transfer function or thermal performance is the most important function of the steam generator component in nuclear power plants. The declining of thermal performance, fouling does not affect the electric power of the nuclear power plant within a certain fouling level, but it affects the output when goes beyond the governor valve wide open of the turbine. The VWO steam pressure can be predicted through the thermal performance evaluation of steam generators in the nuclear power plant. In consideration of the fouling characteristics of the steam generator, methods of the thermal performance evaluation and fouling cases are reviewed, and also the critical VWO value is estimated through the actual thermal performance evaluation. It is necessary to apply the VWO theory based on the thermal performance of the steam generators.

EETCA: Energy Efficient Trustworthy Clustering Algorithm for WSN

  • Senthil, T.;Kannapiran, Dr.B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5437-5454
    • /
    • 2016
  • A Wireless Sensor Network (WSN) is composed of several sensor nodes which are severely restricted to energy and memory. Energy is the lifeblood of sensors and thus energy conservation is a critical necessity of WSN. This paper proposes a clustering algorithm namely Energy Efficient Trustworthy Clustering algorithm (EETCA), which focuses on three phases such as chief node election, chief node recycling process and bi-level trust computation. The chief node election is achieved by Dempster-Shafer theory based on trust. In the second phase, the selected chief node is recycled with respect to the current available energy. The final phase is concerned with the computation of bi-level trust, which is triggered for every time interval. This is to check the trustworthiness of the participating nodes. The nodes below the fixed trust threshold are blocked, so as to ensure trustworthiness. The system consumes lesser energy, as all the nodes behave normally and unwanted energy consumption is completely weeded out. The experimental results of EETCA are satisfactory in terms of reduced energy consumption and prolonged lifetime of the network.

Topological and Statistical Analysis for the High-Voltage Transmission Networks in the Korean Power Grid

  • Kang, Seok-Gu;Yoon, Sung-Guk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.923-931
    • /
    • 2017
  • A power grid is one of the most complex networks and is critical infrastructure for society. To understand the characteristics of a power grid, complex network analysis has been used from the early 2000s mainly for US and European power grids. However, since the power grids of different countries might have different structures, the Korean power grid needs to be examined through complex network analysis. This paper performs the analysis for the Korean power grid, especially for high-voltage transmission networks. In addition, statistical and small-world characteristics for the Korean power grid are analyzed. Generally, the Korean power grid has similar characteristics to other power grids, but some characteristics differ because the Korean power grid is concentrated in the capital area.

Numerical analysis of interference galloping of two identical circular cylinders

  • Blazik-Borowa, E.;Flaga, A.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.243-253
    • /
    • 1998
  • The paper deals with numerical analysis of interference galloping of two elastically supported circular cylinders of equal diameters. The basis of the analysis is quasi-steady model of this phenomenon. The model assumes that both cylinders participate in process of interference galloping and they have two degrees of freedom. The movement of the cylinders is written as a set of four nonlinear differential equations. On the basis of numerical solutions of this equations the authors evaluate the correctness of this quasi-steady model. Then they estimate the dependence of a critical reduced velocity on the Scruton number, turbulence intensity and arrangements of the cylinders.

Stability Analysis of Cracked Cantilever Beam With Tip Mass and Follower Force (끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석)

  • Yoon, Han-Ik;Son, In-Soo;Ahn, Tae-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.99-104
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam with tip mass and follower force is presented. In addition. an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter ins stability based on the variation of the first two resonant frequencies of the beam. Besides. the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF