• Title/Summary/Keyword: Critical Temperature

Search Result 2,706, Processing Time 0.035 seconds

Pressure-Temperature Diagram of Critical Condition for Disproportionation of Nd-Fe-B Alloy in Hydrogen

  • Kwon, H.W.;Kim, D.H.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.155-158
    • /
    • 2010
  • The HDDR (hydrogenation, disproportionation, desorption, and recombination) process can be used as an effective way of converting a no coercivity Nd-Fe-B ingot material, with a coarse $Nd_2Fe_{14}B$ grain structure, to a highly coercive one with a fine grain structure. Careful control of the HDDR process can lead to an anisotropic powder with good $Nd_2Fe_{14}B$ grain texture; the most critical step for inducing texture is disproportionation. The critical conditions (hydrogen pressure and temperature) for the disproportionation reaction of fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ (x = 0 or 0.3, y = 0 or 0.2) alloys, in different atmospheres of pure hydrogen and a mixed gas of hydrogen and argon, was investigated with TPA (thermopiezic analyser). From this, the hydrogen pressure-temperature diagram showing the critical conditions was established. The critical disproportionation temperature of the fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ alloys was slightly increased as the hydrogen pressure decreased in both pure hydrogen and mixed gas. The critical disproportionation temperature of the hydrogenated alloys was higher in the mixed gas than in pure hydrogen. Addition of Ga and Nb increased the critical disproportionation temperature of the fully hydrogenated Nd-Fe-B alloys.

Critical Temperature for Inter-Laminar Shear Strength and Effect of Exposure Time of FRP Rebars (FRP 보강근의 계면전단강도에 대한 임계온도와 노출시간의 영향)

  • Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.45-51
    • /
    • 2013
  • Short beam tests of GFRP and CFRP specimens exposed to high temperature were conducted to measure the inter-laminar shear strength. For the phase I test, the exposure time and temperature were varied to measure reduction in the strength due to the applied conditions. As a results, the critical temperature was found to $270^{\circ}C$ for the both FRP reinforcements. The high temperature, which causes 50% loss of inter-laminar shear strength, is defined as the critical temperature in this study. It should be noted that the critical temperature for the inter-laminar shear strength is mainly dependent on resin properties not on fiber type. In the phase II test, the effect of exposure time was investigated at intervals of 0.25hour for the critical temperature. All test results demonstrate that the exposure time effect is not significant compared to the maximum exposure temperature, but it is not negligible and, moreover, is significant at the critical temperature.

Investigation on Effective Operational Temperature of HTS Cable System considering Critical Current and AC loss

  • Kim, Tae-Min;Yim, Seong-Woo;Sohn, Song-Ho;Lim, Ji-Hyun;Han, Sang-Chul;Ryu, Kyung-Woo;Yang, Hyung-Suk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.307-310
    • /
    • 2016
  • The operational cost for maintaining the superconductivity of high-temperature superconducting (HTS) cables needs to be reduced for feasible operation. It depends on factors such as AC loss and heat transfer from the outside. Effective operation requires design optimization and suitable operational conditions. Generally, it is known that critical currents increase and AC losses decrease as the operational temperature of liquid nitrogen ($LN_2$) is lowered. However, the cryo-cooler consumes more power to lower the temperature. To determine the effective operational temperature of the HTS cable while considering the critical current and AC loss, critical currents of the HTS cable conductor were measured under various temperature conditions using sub-cooled $LN_2$ by Stirling cryo-cooler. Next, AC losses were measured under the same conditions and their variations were analyzed. We used the results to select suitable operating conditions while considering the cryo-cooler's power consumption. We then recommended the effective operating temperature for the HTS cable system installed in an actual power grid in KEPCO's 154/22.9 kV transformer substation.

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

Temperature Effect on Impact Fracture Behavior of GF/PP Composites (GF/PP 복합재료의 충격파괴거동에 대한 온도효과)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

Temperature Effects on Impact Fracture Mechanisms of Glass Fiber/Polypropylene Campsites (유리섬유/폴리프로필렌 복합재료의 충격파괴기구에 대한 온도효과)

  • KOH S. W.;Um Y. S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.314-319
    • /
    • 2004
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness GIC was performed by the impact test in this work The main goal of this work is to study effects of temperature in the impact test with glass fiber/polypropylene(GF/pp) composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of $60^{\circ}C\;to\;-50^{\circ}C$ by impact test. The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

A Study on the Impact Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 충격파괴거동에 관한 연구)

  • 엄윤성;최영근;양병춘;김형진;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.167-173
    • /
    • 2003
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness G$_{IC}$ was performed by the impact test in this work. The main goal of this work is to study the effect of temperature and span of specimen supports on the results of Charpy impact test for GF/PE composite. The critical fracture energy and failure mechanism of GF/PE composites were investigated in the temperature range of $60^{\circ}C;to;-50^{\circ}C$ by the Charpy impact test. The critical fracture energy showed the maximum at the ambient temperature, and it tended to decrease as the temperature increased or decreased from the ambient temperature. The major failure mechanisms are the fiber matrix debonding, the fiber pull-out and/or delamination and the matrix deformation.n.

Standardization of Critical Temperature Measurement based on IEC International Standard

  • Lee, Kyu-Won;Kim, Kyu-Tae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.123-127
    • /
    • 2003
  • For disseminating a ney IEC international standard of critical trmperature of NbTi,Nb$_3$Sn and Bi-2223 Composite Suterconductors, we develpted a measuring system and studied standardization of test method. The measuring system consisted of cryogenic reservoir, base plate, thermometer, voltmeter and current source. Various specimens of the Nbti, Nb$_3$Sn and Bi-2223 composite superconductors were tested using this system for measuring their critical temperatures. After measuring the resistance-temperature relation, the data were compensated with thermoelectric voltages for NbTi Nb$_3$Sn specimens. NbTi specimens showed 9.2 K ~ 9.5 K of transition temperature and Nb$_3$Sn specimen showed about 18 K. Bi-2223 specimens showed 104 K ~ 107 K of transition temperature.

Critical Current Degradation Characteristics by Temperature Difference of L$N_2$-Normal in Repetitive Bending Strain of High Temperature Superconducting Tape (고온 초전도 선재의 굽힘횟수와 온도차에 의한 임계전류저하특성)

  • 김해준;김석환;송규정;김해종;배준한;조전욱;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.274-277
    • /
    • 2003
  • Critical current(Ic) degradation of HTS tapes after bending is one of the hottest issues in HTS development and application studies. Many people are measuring Ic degradations for effect of bending radius. However even if the bending radius is larger than the breaking radius a HTS tapes can be damaged by repetitive bending, which is unavoidable in the winding processes. Therefore, We studied the Ic degradation after repetitive bending. at 77K with self-field, of Bi-2223 tapes processed by "Powder-in-Tube" technique, which was made by America Superconductor Corporation(AMSC) and superconductiing tapes that strain is imposed measured critical current by temperature difference of L$N_2$ and normal temperature. Like this, critical current could measure that degradation about 1~3% by temperature difference. These results will amount the most important basis data in power electric machine of superconductivity cable, magnet, etc that winding work is require.

  • PDF

Fast iterative algorithm for calculating the critical current of second generation high temperature superconducting racetrack coils

  • Huang, Xiangyu;Huang, Zhen;Xu, Xiaoyong;Li, Wan;Jin, Zhijian
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.53-58
    • /
    • 2019
  • The critical current is one of the key parameters of high temperature superconducting (HTS) racetrack coils. Therefore, it is significant to calculate critical currents of HTS coils. This paper introduces a fast iterative algorithm for calculating the critical current of second generation (2G) HTS coils. This model does not need to solve long charging transients which greatly reduced the amount of calculation. To validate this model, the V-I curve of four 2G HTS double racetrack coils are measured. The effect of the silicon steel sheet on the critical current of the racetrack coil is also studied based on this algorithm.