• Title/Summary/Keyword: Critical Strain$({\varepsilon}_c)$

Search Result 15, Processing Time 0.015 seconds

A Study on the Safety Evaluation of Design for Piping Materials (II) (배관용재료의 설계시 안전성 평가에 관한 연구(II))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.3-10
    • /
    • 1995
  • For most engineering materials are influenced by the dominant mechanism resisting crack extention under large scale yielding conditions. Continuum mechanics analysis shows that fracture toughness, in addition to depending on young's modulus, flow stress strain hardening exponent, and yield strain, should be nearly proportoinal to the effective fracture ductility obtained for the stress state characteristic for region ahead of the crack; plane stress or plane strain. It's known that, in most ductile materials, crack propagation of the material strongly governed by the $J_{IC}$ value, which is still difficult to determine for it's complicate and treble-some determinative process. This paper, on the assumption that, initiation of crack tip strain field reaches on the relationships between the critical value of J-integral ($J_{IC}$) and the local fracture strain(${\varepsilon}_c$) in uniaxial tensile test in the region of maximun reduction areas was described.

  • PDF

A Study on the Safety Evaluation of Design for Piping Materials(III) (배관용 재료의 설계시 안전성 평가에 관한 연구(III))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • For the assessment of fracture behaviors of structural components, various fracture mechanics parameters have been applied to date. New approaches to analyze structural fracture performance under elastic-plastic condition have been proposed by the development of testing methods for characterization of material behavior which is defying to the analysis by conventional fracture parameters. In this study, on the assumption that, initiation of crack propagation of a piping materials occurs when the crack tip strain field reaches "the local fracture strain", following two major issues are discussed ; 1) The relationship between the critical value of J-integral($J_{IC}$) and the local fracture strain (${\varepsilon}_c$) in uniaxial tensile test in the region of maximum reduction area was described. 2) To proved the validity of above relations a series of tests were performed under various temperature and on the different piping materials.materials.

  • PDF

Analysis of Consolidation and Shear Characteristics for the Kwangyang Bay Clay (실내시험을 통한 광양만 점토의 압밀 및 전단특성분석)

  • 이영휘;김용준;김대길
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.151-160
    • /
    • 1999
  • A series of laboratory tests for the marine clay sampled under the sea of Kwangyang bay have been conducted. The main types of tests are the general index property tests, the oedometer tests and the triaxial compression tests in both undrained(CIU) and drained(CID) conditions. The clayey samples, classified as CL, CH with natural water content of 38.3~84.6% and liquidity index of 0.71~0.98, are in the normally consolidated state with O.C.R. of 1.0l~l.60. The undrained stress path from CIU tests can be normalized with isotropic consolidation pressure$(p_0)$ and equal shear strain contour is linear passing through the origin in the (q, p) plot. The undrained shear strain is found to be the only function of the stress ratio($\eta$) and linear with intercept in the ($\varepsilon/\eta,\eta$) plot. The built-up pore pressure normalized with pc is also linear with respect to $\eta$. and its slope is defined by ´C´ as a pore pressure parameter. Equations to predict the undrained stress path and the shear strain are proposed. It is proved that the proposed equations give better agreements to the measured values than the Cam-clay theories. The failure points of the stress path are located on the same C.S.L. in (q, p) plot during both CIU and CID tests, which justifies the concept of critical state theory.

  • PDF

A Study on High Temperature Creep and Stress Relaxation Properties of Zr-4 (Zr-4의 고온 크리프 및 응력이완 특성에 관한 연구)

  • Oh, Sea-Kyoo;Park, Chung-Bae;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 1992
  • Zr-4 used for a cladding and an end plug of reactor component has creep deformation under operation at high temperature. Creep is regarded as the time dependent deformation of a material under constant applied stress. Although the major source of the deformation of zirconium component in water-cooled reactors is irradiation creep, the thermal creep may give a rise to significant deformation in reactor component especially at relatively high temperatures and at various constant stresses, and therefore it must be predicted accurately. Stress relaxation is the time dependent change of stress at constant strain and it is a process related intimately to creep. In this paper, the creep behavior and stress relaxation of Zr-4 is examined at the temperature of 50$0^{\circ}C$ that is 40% of the absolute melting temperature of Zr-4 under the stress below yield stress and under the various constant strains. The results obtained are summarized as follows: 1) With an increase of stress, the steady state creep rate increases and the creep rupture time decreases. 2) The steady state creep rate $\varepsilon$(%/s) for the stress $\sigma$sub(c) (kgf/mm super(2)) of Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 are in accord with Norton's model equation($\varepsilon$=K$\sigma$ sub(c) super (n)). The constants of materials computed are as follows: K=3.9881$\times$10 super(-5), n=1.9608 3) The rupture time T sub(r) (hr) decreases linearly with the increase of stress on the log-log scaled graph. The empirical equations computed for Zr-4 are in accord with Bailey's model equation (T sub(r)=K sub(1)$\sigma$sub(c) super(m)). The constants of materials computed are as follows: K sub(1)=1.2875$\times$10 super(16), m=-3.467 4) It seems clear that the strain could be quantitatively dependent on the high temperature creep properties such as creep stress, rupture time, steady state creep rate and total creep rate. It is found that these relationships are linear on the log-log graph. 5) In stress relaxation test, as the critical constant strain that can be allowed to the specimen is larger, stress relaxation becomes more rapid, and as the constant strain is smaller, the stress relaxation becomes slower.

  • PDF

Mechanical Anisotropy of Pocheon Granite under Uniaxial Compression (일축압축하에서 포천화강암의 역학적 이방성)

  • Park Deok-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.337-348
    • /
    • 2005
  • Jurassic granite from Pocheon area were tested to investigate the effect of microcracks on mechanical properties of the granite. Three oriented core specimens were used for uniaxial compressive tests and each core specimen are perpendicular to the axes'R'(rift plane),'c'(grain plane) and'H'(hardway plane), respectively Among vacious elastic constants, the variation of Poisson's ratio as function of the directions was examined. From the related chart between ratio of failure strength and Poisson's ratio, H-specimen shows the highest range in Poisson's ratio and Poisson's ratio decreases in the order of C-specimen and R-specimen. The curve pattern is nearly linear in stage $I\simIII$ but the slope increases abruptly in stage H-3. As shown in the related chart, diverging point of a curve is formed when ratio of failure strength is $0.92\sim0.96$ Stage IV -3 is out of elastic region. The behaviour of rock in the four fracturing stages was analyzed in term of the stress-volumetric strain me. From the stress increment-volumetric strain equations governing the behaviour of rock, characteristic material constants, a, n, Q, m and $\varepsilon_v^{mcf}$, were determined. Among these, inherent microcrack porosity$(a, 10^{-3})$ and compaction exponent(n) in the microcrack closure region(stage I ) show an order of $a^R(3.82)>a^G(3.38)>a^H(2.32)\;and\;n^R(3.69)>n^G(2.79)>n^H(1.99)4, respectively. Especially, critical volumetric microcrack strain($\varepsilon_v^{mcf}$) in the stage W is highest in the H-specimen, normal to the hardway plane. These results indicate a strong correlation between two major sets of microcracks and mechanical properties such as Poisson's ratio and material constants. Correlation of strength anisotropy with microcrack orientation can have important application in rock fracture studies.