• Title/Summary/Keyword: Critical Region

Search Result 1,114, Processing Time 0.028 seconds

A Study on Joining Method of BSCCO(223) Multifilamentary Tape (BSCCO(2223) 다심 초전도 선재의 접합공정 연구)

  • 김정호;김규태;주진호;나완수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.511-517
    • /
    • 2001
  • We evaluated the electrical properties of 37 multifilamentary jointed tapes processed by superconducting joint. In the superconducting joining method, a lap-joint was used. Tapes were selectively etched, and exposed superconducting cores of the two tapes were brought into contact with each other and then only the joined region was uniaxially pressed in the range of 1,000 to 2,50 MPa. The critical current ratio(CCR) and n-value of the jointed tape were evaluated as a function of uniaxial pressure and number of step in the contacting region. It was observed that the CCR was dependent on the number of step, but almost independent of uniaxial pressure. The highest critical current ratio and n-value were obtained to be 58% and 26%, respectively, for the jointed tape to the tape itself.

  • PDF

Conceptual Design for Accelerator-Driven Sodium-Cooled Sub-critical Transmutation Reactors using Scale Laws and Integrated Code System

  • Lee, Kwang-Gu;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.660-665
    • /
    • 1998
  • The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scale and verified through the methodology in this paper, which is referred to advanced Liquid Metal Reactor (ALMR). a Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the intergrated code system. Intergrated Code System (ICS) consist of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related are analyzed once-through. Results of conceptual design are attached in this paper.

  • PDF

Position Estimation of Object Based on Vergence Movement of Cameras (카메라의 vergence 운동에 근거한 물체의 위치 추정)

  • 정남채
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.59-64
    • /
    • 2001
  • In this paper it was proposed method that solve problems of method to segment region of zero disparity and algorithm that extract binocular disparity to estimate position of object by vergence movement of moving stereo cameras experimented to compare those. There was not change of density value almost in region that change of critcal value was not found almost in image, because a high critical value was set so that critical value may be kipt changelessly about all small regions in studied treatise so far. The corresponding points were extracted wrongly by the result. By because the characteristics of small region was evaluated by autocorrelation and the critical value was established that may be proportional to the autocorrelation value, it was confirmed that corresponding points are not extracted almost by mistake and binocular disparity could by extracted with high speed.

  • PDF

Inelastic design of high-axially loaded concrete columns in moderate seismicity regions

  • Ho, Johnny Ching Ming
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.559-578
    • /
    • 2011
  • In regions of high seismic risk, high-strength concrete (HSC) columns of tall buildings are designed to be fully ductile during earthquake attack by providing substantial amount of confining steel within the critical region. However. in areas of low to moderate seismic risk, the same provision of confining steel is too conservative because of the reduced seismic demand. More critically, it causes problematic steel congestion in the beam-column joints and column critical region. This will eventually affect the quality of concrete placing owing to blockage. To relieve the problem, the confining steel in the critical region of HSC columns located in low to moderate seismicity regions can be suitably reduced, while maintaining a limited ductility level. Despite the advantage, there are still no guidelines developed for designing limited ductility HSC columns. In this paper, a formula for designing limited ductility HSC columns is presented. The validity of the formula was verified by testing half-scale HSC columns subjected to combined high-axial load and flexure, in which the confining steel was provided as per the proposed formula. From the test results, it is evident that the curvature ductility factors obtained for all these columns were about 10, which is the generally accepted level of limited ductility.

Performance of Short Tube Orifices Using R-410A Near the Critical Region (R-410A 임계영역 운전조건에서 오리피스의 성능특성에 관한 연구)

  • Choi, Jong-Min;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1106-1112
    • /
    • 2005
  • An experimental investigation was performed to develop an empirical correlation of R-410A flowing through short tube orifices working near the critical region. Tests were executed by varying upstream pressure from 2,619 kPa to 4,551 kPa, and upstream subcooling from 2.8 and $11.1^{\circ}C$. The experimental data were represented as a function of major operating parameters and short tube diameter. As compared to mass flow trends at normal upstream pressures, flow dependency on upstream subcooling became more significant at high upstream pressures due to a higher density change. Based on the database obtained from this study and literature, an empirical correlation was developed from a power law form of dimensionless parameters generated by the Buckingham Pi theorem. The correlation yielded good agreement with the data. Approximately $92\%$ of the data were correlated within a relative deviation of $5\%$.

High Temperature Creep Properties of Al-Al4C3-Al2O3 Alloy by Mechanical Alloying

  • Han, Chang-Suk;Seo, Han-Byeol
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.370-375
    • /
    • 2016
  • Tensile tests and creep tests were carried out at high temperatures on an Al-$Al_4C_3$ alloy prepared by mechanical alloying technique. The material contains about 2.0% carbon and 0.9% oxygen in mass percent, and the volume fractions of $Al_4C_3$ and $Al_2O_3$ particles are estimated at 7.4 and 1.4%, respectively, from the chemical composition. Minimum creep rate decreased steeply near two critical stresses, ${\sigma}_{cl}$ (the lower critical stress) and ${\sigma}_{cu}$ (the upper critical stress), with decreasing applied stress at temperatures below 723 K. Instantaneous plastic strain was observed in creep tests above a critical stress, ${\sigma}_{ci}$, at each test temperature. ${\sigma}_{cu}$ and ${\sigma}_{ci}$ were fairly close to the 0.2% proof stress obtained by tensile tests at each test temperature. It is thought that ${\sigma}_{cl}$ and ${\sigma}_{cu}$ correspond to the microscopic yield stress and the macroscopic yield stress, respectively. The lower critical stress corresponds to the local yield stress needed for dislocations to move in the soft region within subgrains. The creep strain in the low stress range below 723 K arises mainly from the local deformation of the soft region. The upper critical stress is equivalent to the macroscopic yield stress necessary for dislocations within subgrains or in subboundaries; this stress can extensively move beyond subboundaries under a stress above the critical point to yield a macroscopic deformation. At higher temperatures above 773 K, the influence of the diffusional creep increases and the stress exponent of the creep rate decreases.

Analysis of the Position Control Performance under the Time Delay in the Controller Area Network (CAN 시간지연에 대한 아라고 진자의 위치제어 성능분석)

  • Park, Tae-Dong;Lee, Jae-Ho;Youn, Su-Jin;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.354-356
    • /
    • 2006
  • In this paper, the position control performance of networked control systems is analyzed when time delay through the network is considered. Integrating a control system into a network has great advantages over the traditional control system which uses point to point connection: it allows remarkable reduction in wiring, makes it easy to install and maintain the system, and improves compability. However, a networked control system has the critical defect that network uncertainties, such as time delay, can degrade the control system's performance. Therefore, the major concern of a networked control system is analyzing the effect of network uncertainties. This paper is concerned with PID controller performance for stability region, critical stability region and unstability region under the time delay in the Controller Area Network.

  • PDF

THE CHARACTERISTICS OF FRETTING WEAR

  • Iwabuchi, Akira
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.1-3
    • /
    • 1996
  • The characteristics of fretting wear are reviewed. Fretting damage depends on slip amplitude and classified into three groups: (1) an annular damage according to Mindlin's analysis at microslip region, (2) strong adhesive deformation without loose wear particles at the intermediate region, and (3) formation of fine oxide particles at the gross slip region. The critical slip amplitude of fretting is the boundary between (2) and (3). The boundary slip amplitude depends on normal load. The wear rate increases and saturates with increasing slip amplitude. But it is constant by considering the critical amplitude. The role of oxide particles are discussed. Three different actions are noted: accelerating wear, preventing wear and insignificant effect. The oxide shows two opposing effect depends on normal load and slip amplitude. This is related to the removal rate from the interface (abrasive action) and compaction rate at the interface to form a protective layer. The effect of oxidation is significant to determine the wear and friction. The diffusion of oxygen is restricted at the small amplitude. As a result, crack formation at the boundary is a predominant damage, related to fretting fatigue damage.

  • PDF

계면활성제/1-Hoxanol/물 혼합물의 상태도와 전기 전도도에 관한 연구

  • 오성근;김종득
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.12 no.1
    • /
    • pp.34-61
    • /
    • 1986
  • The microstructural transitions of aqueous micellar solutions of cetyltrime-thylammonium bromide and sodiumdodecyl sulfate by adding 1-hexanol were investigated, measuring the concentrations of equilibrated phases and the electrical conductivities at the low concentrations of surfactants, where the solobilities of 1-hexanol varied significantly, at 3$0^{\circ}C$ and 45$^{\circ}C$. Ternary phase diagrams of multiphase regions, constructed by liquid chromatography analysis and by counting the number of phase of samples, consisted of one three-phase region and three two-phase regions. One of the two-phase regions was found to equilibrate an aqueous micellar solution and a liquid crystal, and had a critical point between them. Near this region, the solubility curve varied abruptly, and the isotropic solution turned birefrigent. The conductivities of the single phase regions above the critical point increased up to a certain point as 1-hexanol added, and then decreased, representing the microstructural transition at the supercritical region. Further, the solubility of 1-hexanol in aqueous micellar solution was found to increase as temperature and the number of hydrophilelipophile balance of surfactants increase.

  • PDF

On the Critical Scattering Phenomena of a Nonpolar Binary Liquid Mixture

  • Dong J. Lee;Shoon K. Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.403-406
    • /
    • 1991
  • Light scattering phenomena are discussed for a nonpolar binary liquid mixture composed of an optically active solute and an optically nonactive solvent in the critical region, using the Fisher theory. Comparing them with those in the case that the Ornstein-Zernike theory is satisfied, the appropriate analytic results are obtained and discussed.