• Title/Summary/Keyword: Critical Number

Search Result 2,506, Processing Time 0.037 seconds

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

Energy and Inductance of a HTS Magnet with Various Aspect Ratios (마그넷 형상에 따른 고온초전도 마그넷의 에너지와 인덕턴스)

  • Kang, Myung-Hun;Kim, Young-Min;Ku, Dae-Kwan;Paik, Kyoung-Ho;Cha, Guee-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1134-1139
    • /
    • 2011
  • When the aspect ratio of a magnet varies, the magnetic field in the magnet also varies. The critical current of a tape-shaped HTS wire varies with the direction and magnitude of applied magnetic field. Consequently when the aspect ration of a HTS magnet varies, the critical current of a HTS magnet varies. This paper shows the relation between the aspect ratio of a magnet and the energy and inductance of a HTS magnet. The critical current is also shown at various aspect ratio of the magnet. The length of the HTS wire, inner diameter of the magnet, and number of pancake are chosen to be variables which varies the shape of the magnet. For a HTS magnet consisting of pancake windings, calculation results show the number of pancake windings are the prime factor which varied the energy and inductance of the magnet. The inner diameter of the magnet varies the energy and inductance of the magnet a little.

Unsteady Flow Characteristics of Closed Cavity by Phase Diagram (Phase Diagram에 의한 밀폐캐비티의 비정상 유동특성)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.770-777
    • /
    • 1999
  • In this study a phase diagram has been used to investigate the unsteadiness of two-dimensional lid-driven closed flows within a square cavity for twelve Reynolds numbers; $7.5{\times}10^3,\; 8{\times}10^3,\; 8.5{\times}10^3,\; 9{\times}10^3,\; 9.5{\times}10^3,\; 10^4,\;1.5{\times}10^4,\;2{\times}10^4,\; 3{\times}10^4,\; 7.5{\times}10^4$ and $10^5$. The results indicate that the first critical Reynolds number at which the flow unsteadiness of sinusoidal fluctuation appears from the temporal variation of total kinetic energy curves is assumed of sinusoidal fluctuation appears form the temporal variation of total kinetic energy curves is assumed to be in the neigh-bourhood of $Re=8.5{\times}10^3$ The second critical Reynolds number where the periodic amplitude and frequency collapse to random disturbance being existed around $Re=1.5{\times}10^4$ The exponentially decreasing vortices formed at the lower two corners are found commonly at the time-mean flow pattern of $Re=3{\times}10^4$.

  • PDF

Preventive Strategies of Ventilator Associated Pneumonia

  • Kim, Jin-A;Kim, Keum-Soon
    • Journal of Korean Critical Care Nursing
    • /
    • v.2 no.2
    • /
    • pp.42-55
    • /
    • 2009
  • Purpose: Despite numerous evidence based preventive strategies of ventilator associated pneumonia (VAP) have been introduced, the incidence rate of VAP continues in an unacceptable range. The purposes of this review were to identify risk factors and diagnosis of VAP and to introduce current evidence based preventive strategies of VAP. Methods: A comprehensive literature search using keywords, including ventilator associated pneumonia were entered into a search engine. A number of highly pertinent papers relevant to the purpose of the review were identified. The papers that discussed specific preventive strategies of VAP were selected for analysis and inclusion in this review. Results: A number of evidence based preventive strategies that nurses can implement in their clinical practice to prevent VAP were identified. Such strategies include hand washing, use of protective gloves and gowns, oral care, stress ulcer prophylaxis, avoidance of unnecessary intubation, weaning protocol, sedation vacation, use of non-invasive ventilation, semi-recumbent position, continuous aspiration of subglottic secretions, and maintenance of proper endotracheal tube cuff pressure. Staff education is essential in preventing VAP. Conclusion: Preventive strategies of VAP should be applied to daily nursing care and each critical nurse should play a functional role in preventing VAP.

  • PDF

Linear Stability of Compositional Convection in a Mushy Layer during Solidification of Ammonium Chloride Solution (염화암모늄 수용액 응고시에 Mush 층에서 성분적 대류의 선형안정성)

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • The onset of convection in a mushy layer is analyzed by using linear stability theory in time-dependent solidification of a binary melt. A simplified model of a near-eutectic mush, in which the mush is assumed to be a porous block, is used and the propagation theory is applied to determine the critical conditions for the onset of convection. The present critical Rayleigh number is higher than the existing experimental result and also theoretical results obtained by considering the mushy layer with an overlying liquid layer. The constant pressure (permeable) condition applied on the mush-liquid interface produces a lower critical Rayleigh number, which is closer to the experimental results of aqueous ammonium chloride solution, compared with the impermeable condition.

Recipient Management before Lung Transplantation

  • Kim, Hyoung Soo;Park, Sunghoon
    • Journal of Chest Surgery
    • /
    • v.55 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • Lung transplantation is considered a viable treatment option for patients with end-stage lung disease. Recent decades have seen a gradual increase in the number of lung transplantation patients worldwide, and in South Korea, the case number has increased at least 3-fold during the last decade. Furthermore, the waiting list time is becoming longer, and more elderly patients (>65 years) are undergoing lung transplantation; that is, the patients placed on the waiting list are older and sicker than in the past. Hence, proper management during the pre-transplantation period, as well as careful selection of candidates, is a key factor for transplant success and patient survival. Although referring and transplant centers should address many issues, the main areas of focus should be the timing of referral, nutrition, pulmonary rehabilitation, critical care (including mechanical ventilation and extracorporeal membrane oxygenation), psychological support, and the management of preexisting comorbid conditions (coronary artery disease, diabetes mellitus, gastroesophageal reflux disease, osteoporosis, malignancy, viral infections, and chronic infections). In this context, the present article reviews and summarizes the pre-transplantation management strategies for adult patients listed for lung transplantation.

Hydrodynamic effects of heater lengths on pool boiling critical heat flux (히터 길이가 수조비등 임계열유속에 미치는 수력학적 영향)

  • Su Cheong Park;Do Yeon Kim;Seon Ho Choi;Chang Hoon Lee;Younghun Lim;Chi Young Lee;Yeon Won Lee;Dong In Yu
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2023
  • In the study, pool boing critical heat flux (CHF) was experimentally investigated depending on the length of heaters. A smooth silicon oxide surfaces are used as the boiling surfaces. As the results of pool boiling experiments based on distilled water in ambient pressure condition, the CHF decreased as the length of the heater increased. By the high speed imaging, it was shown that the number of vapor columns increased as the length of the heater increased. Comparing the number of vapor columns and the CHF according to the heater length, the change in the CHF according to the heater length was analyzed based on the hydrodynamic instability.

Derivation of rainfall threshold for urban flood warning based on the dual drainage model simulation

  • Dao, Duc Anh;Kim, Dongkyun;Tran, Dang Hai Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.141-141
    • /
    • 2021
  • This study proposed an equation for Rainfall Threshold for Flood Warning (RTFW) for urban areas based on computer simulations. First, a coupled 1D-2D dual-drainage model was developed for nine watersheds in Seoul, Korea. Next, the model simulation was repeated for a total of 540 combinations of the synthetic rainfall events and watershed imperviousness (9 watersheds × 4 NRCS Curve Number (CN) values × 15 rainfall events). Then, the results of the 101 simulations with the critical flooded depth (0.25m-0.35m) were used to develop the equation that relates the value of RTFW to the rainfall event temporal variability (represented as coefficient of variation) and the watershed Curve Number. The results suggest that 1) the rainfall with greater temporal variability causes critical floods with less amount of total rainfall; and that 2) the greater imperviousness requires less rainfall to have critical floods. For validation, the proposed equation was applied for the flood warning system with two storm events occurred in 2010 and 2011 over 239 watersheds in Seoul. The results of the application showed high performance of the warning system in issuing the flood warning, with the hit, false and missed alarm rates at 68%, 32% and 7.4% respectively for the 2010 event and 49%, 51% and 10.7% for the event in 2011.

  • PDF

Stability analysis of gas-liquid interface using viscous potential flow (점성포텐셜유동을 이용한 이상유동장의 표면안정성 해석)

  • Kim, Hyung-Jun;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3033-3038
    • /
    • 2007
  • In this research, Rayleigh instability of gas-liquid flow in annular pipe is studied in film boiling using viscous potential flow. Viscous potential flow is a kind of approximation of gas-liquid interface considering velocity field as potential including viscosity. A dispersion relation is obtained including the effect of heat and mass transfer and viscosity. New expression for dispersion relation in film boiling and critical wave number is obtained. Viscosity and heat and mass transfer have a stabilizing effect on instability and its effect appears in maximum growth rate and critical wave number. And the existence of marginal stability region is shown.

  • PDF