• Title/Summary/Keyword: Critical Number

Search Result 2,495, Processing Time 0.04 seconds

Secondary Analysis on Pressure Injury in Intensive Care Units

  • Hyun, Sookyung
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.145-150
    • /
    • 2021
  • Patients with Pressure injuries (PIs) may have pain and discomfort, which results in poorer patient outcomes and additional cost for treatment. This study was a part of larger research project that aimed at prediction modeling using a big data. The purpose of this study were to describe the characteristics of patients with PI in critical care; and to explore comorbidity and diagnostic and interventive procedures that have been done for patients in critical care. This is a secondary data analysis. Data were retrieved from a large clinical database, MIMIC-III Clinical database. The number of unique patients with PI was 2,286 in total. Approximately 60% were male and 68.4% were White. Among the patients, 9.9% were dead. In term of discharge disposition, 56.2% (33.9% Home, 22.3% Home Health Care) where as 32.3% were transferred to another institutions. The rest of them were hospice (0.8%), left against medical advice (0.7%), and others (0.2%). The top three most frequently co-existing kinds of diseases were Hypertension, not otherwise specified (NOS), congestive heart failure NOS, and Acute kidney failure NOS. The number of patients with PI who have one or more procedures was 2,169 (94.9%). The number of unique procedures was 981. The top three most frequent procedures were 'Venous catheterization, not elsewhere classified,' and 'Enteral infusion of concentrated nutritional substances.' Patient with a greater number of comorbid conditions were likely to have longer length of ICU stay (r=.452, p<.001). In addition, patient with a greater number of procedures that were performed during the admission were strongly tend to stay longer in hospital (r=.729, p<.001). Therefore, prospective studies focusing on comorbidity; and diagnostic and preventive procedures are needed in the prediction modeling of pressure injury development in ICU patients.

Non-uniform Current Distribution of Multi-Strand HTS Cable (다중-스트랜드 고온초전도케이블의 불균등 전류분포)

  • 배준한;배덕권;심기덕;조전욱;고태국
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.424-429
    • /
    • 2004
  • The 4-probe method with a voltage tap on terminals has been used for the measurement of the critical current of multi-strand high-T$_{c}$ superconducting(HTS) cables. And the critical current of cables is obtained as the measured total current divided by the number of conductor when the terminal voltage exceeds the predetermined criterion of critical current. However, because of the non-uniform current distribution due to the different critical current, shapes, and other characteristics of each conductor, this is not applicable method to the multi-strand HTS cable. To determine the critical current of multi-strand HTS cable, the critical current of each conductor must be measured with different method. h this paper, the current distribution and the critical current of each conductors in multi-strand cable were measured with specially made Pick-up coils and voltage taps. It is presented that the real critical current of multi-strand is smaller than sum of each conductors. The main cause of non-uniform current distribution is the difference between the resistances appeared in each HTS wires.s.

Non-Uniform Current Distribution of Multi-Strand HTS Cable (Multi-Strand HTS 케이블에서의 전류 불균일 분포)

  • Bae, Joon-Han;Bae, Duck-Kweon;Cho, Jeon-Wook;Sim, Ki-Deok;Kim, Hae-Jong;Seong, Ki-Chul;Ko, Tae-Kuk
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.254-259
    • /
    • 2003
  • The 4-probe method with a voltage tap on terminals has been used for the measurement of the critical current of multi-strand high-Tc superconducting (HTS) cables. And the critical current of cables is obtained as the measured total current divided by the number of conductor when the terminal voltage exceeds the predetermined criterion of critical current. However, because of the non-uniform current distribution due to the different critical current, shapes, and other characteristics of each conductor this is not applicable method to the multi-strand HTS cable. To determine the critical current of multi-strand HTS cable the critical current of each conductor must be measured with different method. In this paper, the current distribution and the critical current of each conductor in multi-strand cable were measured with specially made pick-up coils and voltage taps. It is presented that the real critical current of multi-strand is smaller than sum of each conductors. The main cause of non-uniform current distribution is the different resistances appeared in each HTS wires.

  • PDF

Influence of Current Distributions on Critical Current and AC Loss Characteristics in a 3-conductor (전류분포가 3본-도체의 임계전류/교류손실 특성에 미치는 영향)

  • 류경우;최병주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.418-423
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$\sub$c/ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The critical current and AC loss characteristics in the conductor have experimentally investigated. The results show that for uniform current distributions the conductor's critical current is proportional to the critical current of the Bi-2223 tape to which a voltage lead is attached. However it depends on the current non-uniformity parameter in the conductor rather than the tape's critical currents for nonuniform current distributions. The loss tests indicate that the AC loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.

Comparing Two Mycobacterium tuberculosis Genomes from Chinese Immigrants with Native Genomes Using Mauve Alignments

  • Ryoo, Sungweon;Lee, Jeongsoo;Oh, Jee Youn;Kim, Byeong Ki;Kim, Young;Kim, Je Hyeong;Shin, Chol;Lee, Seung Heon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.3
    • /
    • pp.216-221
    • /
    • 2018
  • Background: The number of immigrants with tuberculosis (TB) increases each year in South Korea. Determining the transmission dynamics based on whole genome sequencing (WGS) to cluster the strains has been challenging. Methods: WGS, annotation refinement, and orthology assignment for the GenBank accession number acquisition were performed on two clinical isolates from Chinese immigrants. In addition, the genomes of the two isolates were compared with the genomes of Mycobacterium tuberculosis isolates, from two native Korean and five native Chinese individuals using a phylogenetic topology tree based on the Multiple Alignment of Conserved Genomic Sequence with Rearrangements (Mauve) package. Results: The newly assigned accession numbers for two clinical isolates were CP020381.2 (a Korean-Chinese from Yanbian Province) and CP022014.1 (a Chinese from Shandong Province), respectively. Mauve alignment classified all nine TB isolates into a discriminative collinear set with matched regions. The phylogenetic analysis revealed a rooted phylogenetic tree grouping the nine strains into two lineages: strains from Chinese individuals and strains from Korean individuals. Conclusion: Phylogenetic trees based on the Mauve alignments were supposed to be useful in revealing the dynamics of TB transmission from immigrants in South Korea, which can provide valuable information for scaling up the TB screening policy for immigrants.

MULTIPLICITY RESULTS AND THE M-PAIRS OF TORUS-SPHERE VARIATIONAL LINKS OF THE STRONGLY INDEFINITE FUNCTIONAL

  • Jung, Tack-Sun;Choi, Q-Heung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.239-247
    • /
    • 2008
  • Let $I{\in}C^{1,1}$ be a strongly indefinite functional defined on a Hilbert space H. We investigate the number of the critical points of I when I satisfies two pairs of Torus-Sphere variational linking inequalities and when I satisfies m ($m{\geq}2$) pairs of Torus-Sphere variational linking inequalities. We show that I has at least four critical points when I satisfies two pairs of Torus-Sphere variational linking inequality with $(P.S.)^*_c$ condition. Moreover we show that I has at least 2m critical points when I satisfies m ($m{\geq}2$) pairs of Torus-Sphere variational linking inequalities with $(P.S.)^*_c$ condition. We prove these results by Theorem 2.2 (Theorem 1.1 in [1]) and the critical point theory on the manifold with boundary.

  • PDF

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.

Study of the Critical Gas Flow through an Orifice (오리피스를 통하는 임계 기체 유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.532-537
    • /
    • 2003
  • Gas flow through orifice is encountered in many diverse fields of engineering applications. In order to investigate the critical gas flow through an orifice system, a computational analysis is performed using axisymmetric, compressible, Navier-Stokes equations which are numerically solved by a fully implicit finite volume method. In the present study, the discharge coefficients of two different types of orifices which are a straight-bore orifice and a sharp-edged orifice, are predicted to obtain the critical flow conditions. The present CFD data are compared with the previous experimental results. The present computational results show that the critical mass flow rate through orifice is well predicted and it is a strong function of Reynolds number. The discharge coefficient increases with the orifice diameter.

  • PDF

How to achieve the critical view of safety for safe laparoscopic cholecystectomy: Technical aspects

  • Vishal Gupta
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.27 no.2
    • /
    • pp.201-210
    • /
    • 2023
  • Laparoscopic cholecystectomy is associated with a higher incidence of biliary/vasculobiliary injuries than open cholecystectomy. Anatomical misperception is the most common underlying mechanism of such injuries. Although a number of strategies have been described to prevent these injuries, critical view of safety method of structural identification seems to be the most effective preventive measure. The critical view of safety can be achieved in the majority of cases during laparoscopic cholecystectomy. It is highly recommended by various guidelines. However, its poor understanding and low adoption rates among practicing surgeons have been global problems. Educational intervention and increasing awareness about the critical view of safety can increase its penetration in routine surgical practice. In this article, a technique of achieving critical view of safety during laparoscopic cholecystectomy is described with the aim to enhance its understanding among general surgery trainees and practicing general surgeons.

Study of Flow Structure and Pressure Drop Characteristics in the Louvered-Fin Type Heat Exchanger (루우버휜형 열교환기의 유동구조 및 압력강하 특성에 관한 연구)

  • Lee, K.S.;Jeon, C.D.;Lee, J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.140-154
    • /
    • 1994
  • Experimental studies were performed to determine the characteristics of flow structure and pressure drop in 15 : 1 scale models of multi-louvered fin heat exchanger in a wide range of variables($L_P/F_P=0.5{\sim}1.23$, ${\theta}=27^{\circ}{\sim}37^{\circ}$, $Re_{LP}=50{\sim}2000$). Flow structure inside the louvered fin was analyzed by smoketube method and new correlations on flow efficiency and drag coefficient were suggested. The new definition for flow efficiency, which modifies the existing flow efficiency, can predict the flow efficiency in the range above mentioned and is represented as a function of Reynolds number, louver pitch to fin pitch ratio, louver angle at low Reynolds number. Drag coefficient which is defined here is a function of Reynolds number, louver pitch to fin pitch ratio, louver angle below critical Reynolds number, and can be represented by a function of louver pitch to fin pitch ratio only above the critical Reynolds number.

  • PDF